官网实例详解4.9(conv_filter_visualization.py)-keras学习笔记四

可视化VGG16的过滤器,通过输入空间的梯度下降
Keras实例目录

效果展示

http://i.imgur.com/4nj4KjN.jpg


代码注释

'''Visualization of the filters of VGG16, via gradient ascent in input space.
可视化VGG16的过滤器,通过输入空间的梯度下降
This script can run on CPU in a few minutes.
本脚本在CPU上需要运行一段时间
Results example: http://i.imgur.com/4nj4KjN.jpg
结果实例:http://i.imgur.com/4nj4KjN.jpg
'''
from __future__ import print_function

from scipy.misc import imsave
import numpy as np
import time
from keras.applications import vgg16
from keras import backend as K

# dimensions of the generated pictures for each filter.
# 每个过滤器生成的图像的尺寸。
img_width = 128
img_height = 128

# the name of the layer we want to visualize
# (see model definition at keras/applications/vgg16.py)
# 可视化的层名(见模型定义,在keras/applications/vgg16.py)
layer_name = 'block5_conv1'

# util function to convert a tensor into a valid image
# 函数将张量转换为有效图像

def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    # 归一化张量:0在中心,保证标准是0.1
    x -= x.mean()
    x /= (x.std() + K.epsilon())
    x *= 0.1

    # clip to [0, 1]
    # 剪辑到[ 0, 1 ]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    # 转换为RGB数组
    x *= 255
    if K.image_data_format() == 'channels_first':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# build the VGG16 network with ImageNet weights
# 使用ImageNet权重建立VGG16网络
model = vgg16.VGG16(weights='imagenet', include_top=False)
print('Model loaded.')

model.summary()

# this is the placeholder for the input images
# 输入图像的占位符
input_img = model.input

# get the symbolic outputs of each "key" layer (we gave them unique names).
# 符号输出每个“关键层”(已给了他们唯一名称)。
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])


def normalize(x):
    # utility function to normalize a tensor by its L2 norm
    # 利用L2范数正规化张量的效用函数
    return x / (K.sqrt(K.mean(K.square(x))) + K.epsilon())


kept_filters = []
for filter_index in range(200):
    # we only scan through the first 200 filters,
    # but there are actually 512 of them
    # 只扫描前200个过滤器,实际有512个过滤器
    print('Processing filter %d' % filter_index)
    start_time = time.time()

    # we build a loss function that maximizes the activation
    # of the nth filter of the layer considered
    # 建立损失函数,它最大化期望层过滤器的激活函数
    layer_output = layer_dict[layer_name].output
    if K.image_data_format() == 'channels_first':
        loss = K.mean(layer_output[:, filter_index, :, :])
    else:
        loss = K.mean(layer_output[:, :, :, filter_index])

    # we compute the gradient of the input picture wrt this loss
    # 计算输入图像的梯度损耗。
    grads = K.gradients(loss, input_img)[0]

    # normalization trick: we normalize the gradient
    # 规范化技巧:规范梯度
    grads = normalize(grads)

    # this function returns the loss and grads given the input picture
    # 此函数返回输入图片的损失和梯度
    iterate = K.function([input_img], [loss, grads])

    # step size for gradient ascent
    # 梯度上升的步长
    step = 1.

    # we start from a gray image with some random noise
    # 从有随机噪音的灰色图片开始
    if K.image_data_format() == 'channels_first':
        input_img_data = np.random.random((1, 3, img_width, img_height))
    else:
        input_img_data = np.random.random((1, img_width, img_height, 3))
    input_img_data = (input_img_data - 0.5) * 20 + 128

    # we run gradient ascent for 20 steps
    # 运行梯度上升20步
    for i in range(20):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step

        print('Current loss value:', loss_value)
        if loss_value <= 0.:
            # some filters get stuck to 0, we can skip them
            # 有些过滤器卡在0,跳过它们。
            break

    # decode the resulting input image
    # 解码得到的输入图像
    if loss_value > 0:
        img = deprocess_image(input_img_data[0])
        kept_filters.append((img, loss_value))
    end_time = time.time()
    print('Filter %d processed in %ds' % (filter_index, end_time - start_time))

# we will stich the best 64 filters on a 8 x 8 grid.
# 在8×8网格上列出最好的64个过滤器
n = 8

# the filters that have the highest loss are assumed to be better-looking.
# 假设具有最高损失的滤波器效果更好。
# we will only keep the top 64 filters.
# 只需要保持前64个过滤器
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]

# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
# 建立一个黑色的图片,大小为128×128,有足够的空间为我们的8×8过滤器处理,之间的差距为5px
margin = 5
width = n * img_width + (n - 1) * margin
height = n * img_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))

# fill the picture with our saved filters
# 用保存的过滤器填充图片
for i in range(n):
    for j in range(n):
        img, loss = kept_filters[i * n + j]
        stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
                         (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img

# save the result to disk
# 保存结果(为图片)
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)

代码执行

 

Keras详细介绍

英文:https://keras.io/

中文:http://keras-cn.readthedocs.io/en/latest/

实例下载

https://github.com/keras-team/keras

https://github.com/keras-team/keras/tree/master/examples

完整项目下载

方便没积分童鞋,请加企鹅452205574,共享文件夹。

包括:代码、数据集合(图片)、已生成model、安装库文件等。

官网实例详解4.9(conv_filter_visualization.py)-keras学习笔记四_第1张图片




你可能感兴趣的:(python,人工智能,深度学习,keras)