工程地址:https://github.com/yizt/numpy_neuron_network
基础知识
0_1-全连接层、损失函数的反向传播
0_2_1-卷积层的反向传播-单通道、无padding、步长1
0_2_2-卷积层的反向传播-多通道、无padding、步长1
0_2_3-卷积层的反向传播-多通道、无padding、步长不为1
0_2_4-卷积层的反向传播-多通道、有padding、步长不为1
0_2_5-池化层的反向传播-MaxPooling、AveragePooling、GlobalAveragePooling、GlobalMaxPooling
0_3-激活函数的反向传播-ReLU、LeakyReLU、PReLU、ELU、SELU
0_4-优化方法-SGD、AdaGrad、RMSProp、Adadelta、Adam
DNN练习
1_1_1-全连接神经网络做线性回归
1_1_2-全连接神经网络做mnist手写数字识别
CNN练习
2_1-numpy卷积层实现
2_2-numpy池化层实现
2_3-numpy-cnn-mnist手写数字识别
本文目录
本文将用numpy实现dnn, 并测试mnist手写数字识别
a)如果对神经网络的反向传播过程还有不清楚的,可以参考0_1-全连接层、损失函数的反向传播
b) 激活函数的反向传播过程见0_3-激活函数的反向传播-ReLU、LeakyReLU、PReLU、ELU、SELU
网络结构如下,包括3个fc层:
input(28*28)=> fc (256) => relu => fc(256) => relu => fc(10)
import numpy as np
# 定义权重、神经元、梯度
weights={}
weights_scale=1e-3
weights["W1"]=weights_scale*np.random.randn(28*28,256)
weights["b1"]=np.zeros(256)
weights["W2"]=weights_scale*np.random.randn(256,256)
weights["b2"]=np.zeros(256)
weights["W3"]=weights_scale*np.random.randn(256,10)
weights["b3"]=np.zeros(10)
nuerons={}
gradients={}
from nn.layers import fc_forward
from nn.activations import relu_forward
# 定义前向过程
def forward(X):
nuerons["z2"]=fc_forward(X,weights["W1"],weights["b1"])
nuerons["z2_relu"]=relu_forward(nuerons["z2"])
nuerons["z3"]=fc_forward(nuerons["z2_relu"],weights["W2"],weights["b2"])
nuerons["z3_relu"]=relu_forward(nuerons["z3"])
nuerons["y"]=fc_forward(nuerons["z3_relu"],weights["W3"],weights["b3"])
return nuerons["y"]
from nn.losses import cross_entropy_loss
from nn.layers import fc_backward
from nn.activations import relu_backward
# 定义后向过程
def backward(X,y_true):
loss,dy=cross_entropy_loss(nuerons["y"],y_true)
gradients["W3"],gradients["b3"],gradients["z3_relu"]=fc_backward(dy,weights["W3"],nuerons["z3_relu"])
gradients["z3"]=relu_backward(gradients["z3_relu"],nuerons["z3"])
gradients["W2"],gradients["b2"],gradients["z2_relu"]=fc_backward(gradients["z3"],
weights["W2"],nuerons["z2_relu"])
gradients["z2"]=relu_backward(gradients["z2_relu"],nuerons["z2"])
gradients["W1"],gradients["b1"],_=fc_backward(gradients["z2"],
weights["W1"],X)
return loss
# 获取精度
def get_accuracy(X,y_true):
y_predict=forward(X)
return np.mean(np.equal(np.argmax(y_predict,axis=-1),
np.argmax(y_true,axis=-1)))
mnist.pkl.gz数据源: http://deeplearning.net/data/mnist/mnist.pkl.gz
from nn.load_mnist import load_mnist_datasets
from nn.utils import to_categorical
train_set, val_set, test_set = load_mnist_datasets('mnist.pkl.gz')
train_y,val_y,test_y=to_categorical(train_set[1]),to_categorical(val_set[1]),to_categorical(test_set[1])
# 随机选择训练样本
train_num = train_set[0].shape[0]
def next_batch(batch_size):
idx=np.random.choice(train_num,batch_size)
return train_set[0][idx],train_y[idx]
x,y= next_batch(16)
print("x.shape:{},y.shape:{}".format(x.shape,y.shape))
x.shape:(16, 784),y.shape:(16, 10)
# 可视化
import matplotlib.pyplot as plt
digit=train_set[0][3]
plt.imshow(np.reshape(digit,(28,28)))
plt.show()
# 初始化变量
batch_size=32
epoch = 3
steps = train_num // batch_size
lr = 0.1
for e in range(epoch):
for s in range(steps):
X,y=next_batch(batch_size)
# 前向过程
forward(X)
loss=backward(X,y)
# 更新梯度
for k in ["W1","b1","W2","b2","W3","b3"]:
weights[k]-=lr*gradients[k]
if s % 500 ==0:
print("\n epoch:{} step:{} ; loss:{}".format(e,s,loss))
print(" train_acc:{}; val_acc:{}".format(get_accuracy(X,y),get_accuracy(val_set[0],val_y)))
print("\n final result test_acc:{}; val_acc:{}".
format(get_accuracy(test_set[0],test_y),get_accuracy(val_set[0],val_y)))
epoch:0 step:0 ; loss:2.302584820875885
train_acc:0.1875; val_acc:0.103
epoch:0 step:200 ; loss:2.3089974735813046
train_acc:0.0625; val_acc:0.1064
epoch:0 step:400 ; loss:2.3190137162037106
train_acc:0.0625; val_acc:0.1064
epoch:0 step:600 ; loss:2.29290016314387
train_acc:0.1875; val_acc:0.1064
epoch:0 step:800 ; loss:2.2990879829286004
train_acc:0.125; val_acc:0.1064
epoch:0 step:1000 ; loss:2.2969247354797817
train_acc:0.125; val_acc:0.1064
epoch:0 step:1200 ; loss:2.307249383676819
train_acc:0.09375; val_acc:0.1064
epoch:0 step:1400 ; loss:2.3215380862102757
train_acc:0.03125; val_acc:0.1064
epoch:1 step:0 ; loss:2.2884130059797547
train_acc:0.25; val_acc:0.1064
epoch:1 step:200 ; loss:1.76023258152068
train_acc:0.34375; val_acc:0.2517
epoch:1 step:400 ; loss:1.4113708080481038
train_acc:0.40625; val_acc:0.3138
epoch:1 step:600 ; loss:1.4484238805860425
train_acc:0.53125; val_acc:0.5509
epoch:1 step:800 ; loss:0.4831932927037818
train_acc:0.9375; val_acc:0.7444
epoch:1 step:1000 ; loss:0.521746944367524
train_acc:0.84375; val_acc:0.8234
epoch:1 step:1200 ; loss:0.5975823718636631
train_acc:0.875; val_acc:0.8751
epoch:1 step:1400 ; loss:0.39426304417143254
train_acc:0.9375; val_acc:0.8939
epoch:2 step:0 ; loss:0.3392397455325375
train_acc:0.9375; val_acc:0.8874
epoch:2 step:200 ; loss:0.2349061434167009
train_acc:0.96875; val_acc:0.9244
epoch:2 step:400 ; loss:0.1642980488678663
train_acc:0.96875; val_acc:0.9223
epoch:2 step:600 ; loss:0.18962678031295344
train_acc:1.0; val_acc:0.9349
epoch:2 step:800 ; loss:0.1374088809322303
train_acc:1.0; val_acc:0.9365
epoch:2 step:1000 ; loss:0.45885105735878895
train_acc:0.96875; val_acc:0.939
epoch:2 step:1200 ; loss:0.049076886226820146
train_acc:1.0; val_acc:0.9471
epoch:2 step:1400 ; loss:0.3464252344080918
train_acc:0.9375; val_acc:0.9413
epoch:3 step:0 ; loss:0.2719433362166901
train_acc:0.96875; val_acc:0.9517
epoch:3 step:200 ; loss:0.06844332074679768
train_acc:1.0; val_acc:0.9586
epoch:3 step:400 ; loss:0.16346902137921188
train_acc:1.0; val_acc:0.9529
epoch:3 step:600 ; loss:0.15661875582989374
train_acc:1.0; val_acc:0.9555
epoch:3 step:800 ; loss:0.10004190054365474
train_acc:1.0; val_acc:0.9579
epoch:3 step:1000 ; loss:0.20624793312023684
train_acc:0.96875; val_acc:0.9581
epoch:3 step:1200 ; loss:0.016292493383161803
train_acc:1.0; val_acc:0.9602
epoch:3 step:1400 ; loss:0.08761421046492293
train_acc:1.0; val_acc:0.9602
epoch:4 step:0 ; loss:0.23058956036352923
train_acc:0.9375; val_acc:0.9547
epoch:4 step:200 ; loss:0.14973880899309255
train_acc:0.96875; val_acc:0.9674
epoch:4 step:400 ; loss:0.4563995699690676
train_acc:0.9375; val_acc:0.9667
epoch:4 step:600 ; loss:0.03818259411193518
train_acc:1.0; val_acc:0.9641
epoch:4 step:800 ; loss:0.18057951765239755
train_acc:1.0; val_acc:0.968
epoch:4 step:1000 ; loss:0.05313018618481231
train_acc:1.0; val_acc:0.9656
epoch:4 step:1200 ; loss:0.07373341371929959
train_acc:1.0; val_acc:0.9692
epoch:4 step:1400 ; loss:0.0499225679993673
train_acc:1.0; val_acc:0.9696
final result test_acc:0.9674; val_acc:0.9676
# 查看预测结果
x,y=test_set[0][5],test_y[5]
plt.imshow(np.reshape(x,(28,28)))
plt.show()
y_predict = np.argmax(forward([x])[0])
print("y_true:{},y_predict:{}".format(np.argmax(y),y_predict))
y_true:1,y_predict:1