cs231n assignment2 Dropout

Dropout forward pass

np.random.seed(231)
x = np.random.randn(500, 500) + 10

for p in [0.25, 0.4, 0.7]:
  out, _ = dropout_forward(x, {'mode': 'train', 'p': p})
  out_test, _ = dropout_forward(x, {'mode': 'test', 'p': p})

  print('Running tests with p = ', p)
  print('Mean of input: ', x.mean())
  print('Mean of train-time output: ', out.mean())
  print('Mean of test-time output: ', out_test.mean())
  print('Fraction of train-time output set to zero: ', (out == 0).mean())
  print('Fraction of test-time output set to zero: ', (out_test == 0).mean())
  print()

dropout_forward 实现:

    这里在training中多除以一个keep_prob,在testing中就不用做任何操作了

def dropout_forward(x, dropout_param):
   
    p, mode = dropout_param['p'], dropout_param['mode']
    if 'seed' in dropout_param:
        np.random.seed(dropout_param['seed'])

    mask = None
    out = None

    if mode == 'train':
        #######################################################################
        # TODO: Implement training phase forward pass for inverted dropout.   #
        # Store the dropout mask in the mask variable.                        #
        #######################################################################
        keep_prob = 1 - p
        mask = (np.random.rand(*x.shape) < keep_prob) / keep_prob
        out = mask * x
        #######################################################################
        #                           END OF YOUR CODE                          #
        #######################################################################
    elif mode == 'test':
        #######################################################################
        # TODO: Implement the test phase forward pass for inverted dropout.   #
        #######################################################################
        out = x
        #######################################################################
        #                            END OF YOUR CODE                         #
        #######################################################################

    cache = (dropout_param, mask)
    out = out.astype(x.dtype, copy=False)

    return out, cache

 

Dropout backward pass

np.random.seed(231)
x = np.random.randn(10, 10) + 10
dout = np.random.randn(*x.shape)

dropout_param = {'mode': 'train', 'p': 0.2, 'seed': 123}
out, cache = dropout_forward(x, dropout_param)
dx = dropout_backward(dout, cache)
dx_num = eval_numerical_gradient_array(lambda xx: dropout_forward(xx, dropout_param)[0], x, dout)

# Error should be around e-10 or less
print('dx relative error: ', rel_error(dx, dx_num))

dropout_backward 实现:

def dropout_backward(dout, cache):

    dropout_param, mask = cache
    mode = dropout_param['mode']

    dx = None
    if mode == 'train':
        #######################################################################
        # TODO: Implement training phase backward pass for inverted dropout   #
        #######################################################################
        dx = mask * dout
        #######################################################################
        #                          END OF YOUR CODE                           #
        #######################################################################
    elif mode == 'test':
        dx = dout
    return dx

 

Regularization experiment

# Regularization experiment
data = get_CIFAR10_data()
for k, v in data.items():
  print('%s: ' % k, v.shape)
# Train two identical nets, one with dropout and one without
np.random.seed(231)
num_train = 500
small_data = {
  'X_train': data['X_train'][:num_train],
  'y_train': data['y_train'][:num_train],
  'X_val': data['X_val'],
  'y_val': data['y_val'],
}

solvers = {}
dropout_choices = [1, 0.25]
for dropout in dropout_choices:
  model = FullyConnectedNet([500], dropout=dropout)
  print(dropout)

  solver = Solver(model, small_data,
                  num_epochs=25, batch_size=100,
                  update_rule='adam',
                  optim_config={
                    'learning_rate': 5e-4,
                  },
                  verbose=True, print_every=100)
  solver.train()
  solvers[dropout] = solver

# Plot train and validation accuracies of the two models

train_accs = []
val_accs = []
for dropout in dropout_choices:
    solver = solvers[dropout]
    train_accs.append(solver.train_acc_history[-1])
    val_accs.append(solver.val_acc_history[-1])

plt.subplot(3, 1, 1)
for dropout in dropout_choices:
    plt.plot(solvers[dropout].train_acc_history, 'o', label='%.2f dropout' % dropout)
plt.title('Train accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(ncol=2, loc='lower right')

plt.subplot(3, 1, 2)
for dropout in dropout_choices:
    plt.plot(solvers[dropout].val_acc_history, 'o', label='%.2f dropout' % dropout)
plt.title('Val accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(ncol=2, loc='lower right')

plt.gcf().set_size_inches(15, 15)
plt.show()

cs231n assignment2 Dropout_第1张图片

可见,dropout 限制了在 training data 上的表现,在 val data 上的表现有所提高

你可能感兴趣的:(Machine,Learning)