牛顿迭代法

f(x) f ( x ) R 有二阶连续导数,且 f(x)0 f ′ ( x ) ≠ 0
x0,x, ∀ x 0 , x ∈ R , f(x0)=0 f ( x 0 ) = 0
f(x0)=f(x)+f(x)Δx+12f(ε)Δx2=0 f ( x 0 ) = f ( x ) + f ′ ( x ) Δ x + 1 2 f ″ ( ε ) Δ x 2 = 0

x0x=Δx=1f(x)[f(x)+12f(ε)Δx2] x 0 − x = Δ x = − 1 f ′ ( x ) [ f ( x ) + 1 2 f ″ ( ε ) Δ x 2 ]
=f(x)f(x)12f(ε)f(x)Δx2 = − f ( x ) f ′ ( x ) − 1 2 f ″ ( ε ) f ′ ( x ) Δ x 2

x0=xf(x)f(x)12f(ε)f(x)Δx2 x 0 = x − f ( x ) f ′ ( x ) − 1 2 f ″ ( ε ) f ′ ( x ) Δ x 2
由于 limxx0[12f(ε)f(x)Δx2]=0 lim x → x 0 [ − 1 2 f ″ ( ε ) f ′ ( x ) Δ x 2 ] = 0
因此 limxx0[xf(x)f(x)]=x0 lim x → x 0 [ x − f ( x ) f ′ ( x ) ] = x 0
F(x)=xf(x)f(x) F ( x ) = x − f ( x ) f ′ ( x ) ,则 limxx0F(x)=x0 lim x → x 0 F ( x ) = x 0
由此得到迭代公式:
xk+1=F(xk)=xkf(xk)f(xk) x k + 1 = F ( x k ) = x k − f ( x k ) f ′ ( x k )

你可能感兴趣的:(数学分析)