CAFAR10数据集介绍:CAFAR
图像大小:
训练集:50000
测试集:10000
类别:
classes = ('plane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
实验步骤:
1、加载数据集:torchvision.dataset.CIFAR10(parameters)
note:
#define transform
#hint: Normalize(mean, var) to normalize RGB
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#define trainloader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
#define testloader
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True, num_workers=2)
2、定义网络结构:以AlexNet为例构建网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#constract network
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = self.pool1(F.relu(self.conv1(x)))
out = self.pool1(F.relu(self.conv2(out)))
out = out.view(-1, 16*5*5)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
net = Net()
print(net)
3、定义损失函数和优化器
#define loss
cost = nn.CrossEntropyLoss()
#define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
4、训练网络
#iteration for training
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = cost(outputs, labels)
loss.backward()
optimizer.step()
#print loss result
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f'%(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.001
print('done')
5、展示部分结果(图像+预测类别)
#get random image and label
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('groundTruth: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))
#get the predict result
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
print('prediction: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))
6、测试整个预测结果
#test the whole result
correct = 0.0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (pred == labels).sum()
print('average Accuracy: %d %%' %(100*correct / total))
7、展示各类别预测结果
#list each class prediction
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
c = (pred == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += float(c[i])
class_total[label] += 1
print('each class accuracy: \n')
for i in range(10):
print('Accuracy: %6s %2d %%' %(classes[i], 100 * class_correct[i] / class_total[i]))
完整代码如下:
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img / 2 + 0.5
np_img = img.numpy()
plt.imshow(np.transpose(np_img, (1, 2, 0)))
#define transform
#hint: Normalize(mean, var) to normalize RGB
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#define trainloader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
#define testloader
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True, num_workers=2)
#define class
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#define the network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#constract network
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = self.pool1(F.relu(self.conv1(x)))
out = self.pool1(F.relu(self.conv2(out)))
out = out.view(-1, 16*5*5)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
net = Net()
print(net)
#define loss
cost = nn.CrossEntropyLoss()
#define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#iteration for training
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = cost(outputs, labels)
loss.backward()
optimizer.step()
#print loss result
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f'%(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.001
print('done')
'''
#get random image and label
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('groundTruth: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))
#get the predict result
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
print('prediction: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))
'''
#test the whole result
correct = 0.0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (pred == labels).sum()
print('average Accuracy: %d %%' %(100*correct / total))
#list each class prediction
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
c = (pred == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += float(c[i])
class_total[label] += 1
print('each class accuracy: \n')
for i in range(10):
print('Accuracy: %6s %2d %%' %(classes[i], 100 * class_correct[i] / class_total[i]))
实验结果:
可以看到,预测结果为55%,其中较低识别率的类别为cat(19%), bird(33%), truck(47%),设法提高小目标类别的准确率能进一步提高整体识别效果。此处仅以最简单的AlexNet即达到了55%的识别效果,最高识别类别car(74%),horse(67%), plane(67%)。进一步使用更复杂的网络可进一步提高识别效果。
practice makes perfects !
github soure code: https://github.com/GinkgoX/CAFAR10_Classification_Task/blob/master/CAFAR10_AlexNet.ipynb