- 【NWFSP问题】基于中华穿山甲算法CPO求解零等待流水车间调度问题NWFSP研究(Matlab代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述1.引言2.理论基础2.1中华穿山甲算法(CPO)核心原理2.2NWFSP数学模型3.CPO-NWFSP求解框架设计3.1编码与解码3.2离散化位置更新3.3目标函数适配4.实验设计与性能分析4.1实验设置4.2结果分析4.3敏感性分析5.结论与展望
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- ShaderGraph节点解析(136):矩形节点(Rectangle Node)详解
小李也疯狂
#UnityShaderGraphRectangle
目录一、节点功能概述二、端口详解三、控制选项四、技术原理解析4.1数学原理(距离场计算)4.2生成代码解析4.3视觉特性五、应用场景与实战案例5.1UI元素(矩形按钮/面板)场景:在UI中生成无纹理的矩形按钮或面板,支持动态调整大小和圆角(配合其他节点)5.2材质纹理(网格/条纹)场景:为材质添加矩形网格或条纹纹理(如布料格子、屏幕像素感)5.3粒子形状(矩形粒子/条纹)场景:控制粒子的形状为矩形
- ShaderGraph节点解析(124):绕轴旋转节点(Rotate About Axis Node)详解
小李也疯狂
#unityShaderGraphUnity
目录一、节点功能概述二、端口详解控制选项三、技术原理解析3.1数学基础:罗德里格斯旋转公式3.2旋转矩阵构造3.3生成代码解析1.弧度模式(Radians)2.度模式(Degrees)3.4旋转方向:右手定则四、应用场景与实战案例4.1角色骨骼旋转(动画驱动)场景:实现角色手臂绕肱骨(上臂骨)旋转,模拟弯曲动作4.2相机环绕效果(第三人称视角)场景:让相机绕目标物体(如角色)的Y轴旋转,实现环绕观
- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 马尔可夫链:随机过程的记忆法则与演化密码
大千AI助手
人工智能Python#OTHERpython人工智能马尔科夫链MC算法随机过程
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义:无记忆的随机演化马尔可夫链(MarkovChain)是一种具有马尔可夫性质的离散随机过程,其核心特征是:未来状态仅取决于当前状态,与历史路径无关数学表述:[P(Xt+1=xt+1∣Xt=xt,Xt−1=xt−1,…,X0=x0)=P(Xt
- LRU缓存算法在搜索引擎中的应用
数据结构与算法学习
缓存算法搜索引擎ai
LRU缓存算法在搜索引擎中的应用关键词:LRU算法、缓存淘汰、搜索引擎、哈希表、双向链表、性能优化、访问频率摘要:本文深入探讨了LRU(最近最少使用)缓存算法在搜索引擎中的关键应用。我们将从基本概念出发,通过生活化的比喻解释LRU的工作原理,分析其在搜索引擎架构中的具体实现方式,并通过Python代码示例展示如何构建一个高效的LRU缓存系统。文章还将讨论LRU算法的数学建模、实际应用场景以及未来发
- OpenCV教程——图像模糊。均值模糊,高斯模糊,中值模糊,双边模糊,高斯分布
1.图像模糊图像模糊是图像处理中最简单和常用的操作之一。⚠️使用该操作的原因之一是为了给图像预处理时降低噪声。图像模糊操作背后是数学的卷积计算。卷积操作的原理:常用的图像模糊的方法:均值模糊高斯模糊中值模糊双边模糊这四种模糊方式有时也被称为:均值滤波、高斯滤波、中值滤波和双边滤波。因为模糊属于一种滤波操作,具体关系可参照下图:其中,均值滤波、高斯滤波和中值滤波属于线性滤波;而双边滤波属于非线性滤波
- 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
猿享天开
医学影像支持向量机机器学习人工智能算法
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 离散数学篇--复合函数性质总结
haoly1989
计算机科学的数学基础学习
结论总结双射复合函数(g∘fg\circfg∘f双射)内层函数fff:单射且全函数。外层函数ggg:满射。满射复合函数(g∘fg\circfg∘f满射)外层函数ggg:必满射。内层函数fff:未必满射(存在反例)。单射复合函数(g∘fg\circfg∘f单射)外层函数ggg:未必单射(存在反例)。内层函数fff:若ggg全函数,则必单射;否则可能不单射(需构造特定反例)。复合函数性质总结:1.双射
- 使用 Python 在 Word 文档中插入数学公式 - 详解
nuclear2011
PythonWordpython插入数学公式到Word文档添加数学表达式到Word文档给Word文档添加数学公式MathML数学公式LaTeX数学公式
目录为什么在Word文档中插入数学公式?环境准备如何使用Python在Word文档中插入数学公式方法一:使用EQ域插入数学公式方法二:通过LaTeX和MathML插入复杂数学公式总结在金融、工程、教育和科研等专业领域的文档中常常需要包含复杂且精确的数学公式。将数学公式直接嵌入文档中,不仅能够提升文档的专业水准,还能实现公式的自动更新和动态计算,从而有效提升工作效率和内容的准确性。本文将介绍如何使用
- 【数据分析】Python实现线性回归和多元线性回归(全代码)
干了这一碗BUG
线性回归回归算法
老规矩,涉及到的数学原理,想深入了解的可以自行查阅相关资料,这里直接上干货用Python实现。目录逻辑回归中涉及的术语线性回归Python实现多元线性回归Python实现逻辑回归中涉及的术语以下是逻辑回归中一些常见的术语:自变量:应用于因变量预测的输入特征或预测因子。因变量:逻辑回归模型中的目标变量,即我们试图预测的变量。逻辑函数:用于表示自变量和因变量之间关系的公式。逻辑函数将输入变量转换为0到
- Python实例题:简单的聊天机器人
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目简单的聊天机器人要求:实现一个基于规则的聊天机器人,支持简单问答和对话。支持以下功能:问候语识别与回应天气查询(模拟)时间/日期查询简单数学计算随机笑话生成添加对话历史记录功能,可随时查看。支持退出对话的指令。解题思路:使用关键词匹配实现简单的问答逻辑。利用Python内置模块处理时间、数学计算等功能。维护对话历史列表存储交
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 解读国密非对称加密算法SM2
云水木石
详解国密算法数据安全
本文先介绍非对称加密算法,然后聊一聊椭圆曲线密码算法(EllipticCurveCryptography,ECC),最后才是本文的主题国密非对称加密算法SM2。因为我的数学知识有限,对于算法涉及的一些复杂的理论知识,也是不懂,所以本文不会涉及理论,仅仅从编程的角度解读一下SM2。在进行国密算法开发的这段时间,我主要参考的书籍是《深入浅出HTTPS:从原理到实战》,微信读书上也有电子版,如果你也是进
- 取余和取模到底是不是一回事?对比Python、Java、C和C++中的%运算符
霜叶桑
javapythonc语言c++
取余和取模到底是不是一回事?对比Python、JAVA、C和C++中的%运算符数学中的「取余」和「取模」计算机领域中的「取余」和「取模」Python、Java、C和C++中的`%`运算符Python:取模运算Java:取余运算C和C++:取余运算为什么一般用正除数数学中的「取余」和「取模」在纯数学中,当我们谈论整数除法a÷ba\divba÷b(aaa是被除数,bbb是除数,且b≠0b\not=0
- reveiw of test --welcome www.1maitao.com
从0到1的技术进阶
数据结构算法出版网络生活
--welcomewww.1maitao.comA数学的复习:1.最好能在7月前开始,如果你基础不是很好,又想在数学多拿分的话。2.课本很重要,08和09的题已经充分说明了基础的重要性,最好在5——6月把两册高数书及例题过两遍,有个宏观的把握,拿到题,就知道是在考什么。3.参考书的选择:个人觉得李永乐那本复习全书更注重基础,更贴近这2年的考研风格。全书中线性代数那100多页讲得超好。4.复习进度:
- 271万+学术论文数据集 (2007-2025.4)
.Android安卓科研室.
数据引用数据分析
文章目录数据下载地址数据指标说明一、数据介绍二、数据指标三、数据概览项目备注数据下载地址数据下载地址点击这里下载数据数据指标说明arXiv是一个向所有人开放的学术资源共享平台,创立于1991年,是开放获取运动的先驱。该平台由全球志愿者团队维护,目前已收录超过200万篇学术论文,涵盖物理学、计算机科学、数学等八大核心学科领域。通过近30年的发展,arXiv不仅为科研人员提供了免费的知识共享渠道,也成
- 语言模型之谜:提示内容与格式的交响诗
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
当代人工智能领域中,语言模型(LLM)正以前所未有的规模和深度渗透到各行各业。从代码生成到数学推理,从问答系统到多项选择题,每一次技术的跃进都离不开一个看似简单却充满玄机的关键环节——提示(prompt)的设计。而在这场提示优化的探索中,内容与格式的双重奏正逐渐揭开其神秘面纱,谱写出一曲宏大的交响诗。本文将带您走进“内容格式集成提示优化(CFPO)”的奇幻世界,揭示如何透过细腻的内容雕琢和精妙的格
- 每日一题 2025-7-6 《努力的乐乐》
WYC135164
算法
K14363努力的乐乐题目描述乐乐的数学成绩在班级里很拔尖,但是语文成绩一直不太好,所以他在这个学期一开始就一直很努力学习语文。这个学期乐乐一共参加了n次考试,他现在想统计下这n次考试中,自己的语文成绩和数学成绩之间的差距有没有缩小。现在给出乐乐这n次考试每一次的两科成绩,请你帮助他算一下每一次数学成绩减去语文成绩的差值。输入格式第一行,一个正整数n,表示乐乐参加的考试次数。接下来n行,每行两个正
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 物联网零售领域AI算力网络与通信的应用探索
AI算力网络与通信
物联网零售人工智能ai
物联网零售领域AI算力网络与通信的应用探索关键词:物联网、零售领域、AI算力网络、通信、应用探索摘要:本文聚焦于物联网零售领域,深入探讨了AI算力网络与通信的应用。首先介绍了相关背景,包括目的、预期读者等。接着对核心概念进行解释,阐述它们之间的关系并给出原理架构示意图和流程图。然后详细讲解核心算法原理、数学模型与公式,通过项目实战展示代码案例及解读。还介绍了实际应用场景、推荐相关工具资源,分析未来
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- 在 .docx 中键入正确的数学符号
文章目录\not\perp...做项目需要使用.docx写复杂的数学公式。虽然Word和WPS都已经支持LaTex代码,但是支持的很差劲(╬ ̄皿 ̄),许多符号无法生成。\not\perp为了输入⊥̸\not\perp⊥符号,需要依次执行:插入-符号字体:CambriaMath插入Unicode+22A5(⊥\perp⊥符号)插入Unicode+0338(⋅̸\not\sdot⋅组合符号)…
- 【刚考完的真题】2025年全国青少年信息素养大赛—图形化编程挑战赛-复赛/省赛真题(小高组)——谢尔宾斯基地毯
部分地区的信息素养大赛图形化复赛已考完,还没考的小伙伴可以去做做,看看难度如何~谢尔宾斯基地毯谢尔宾斯基是波兰的一名数学家,他发现了一种“自相似”的图形——谢尔宾斯基地毯,构造方法如下:(1)取一个实心的正方形(2)将其划分为9个相等的小正方形(3)移除中间的小正方形,留下周围的8个小正方形(4)对这8个小正方形重复上述操作,每次迭代都会让结构变得更加复杂。具体要求对画笔进行编程,不要对画笔的初始
- 【动态规划】一次性整理子序列问题题型系列,八个例题实战详细解析 (包含我自己精心整理的动态规划解题思路)
ngioig
动态规划leetcode算法职场和发展后端
前言最近刷了子序列系列的题型,一共八个力扣题,这里对子序列问题进行一个简单的总结,全是动态规划的解法,当然里边有些题选有更优的解法。1.动态规划解题思路动态规划(DynamicProgramming,DP)是一种在计算机科学和数学中用于解决最优化问题的方法。它特别适用于可以分解为互相重叠的子问题的问题,并且这些子问题的解可以被存储起来以避免重复计算,从而提高效率。首先,我们要熟悉动态规划的套路也要
- happy-llm 第二章 Transformer架构
weixin_38374194
transformer深度学习人工智能学习
文章目录一、注意力机制核心解析1.1注意力机制的本质与核心变量1.2注意力机制的数学推导1.3注意力机制的变种实现1.3.1自注意力(Self-Attention)1.3.2掩码自注意力(MaskedSelf-Attention)1.3.3多头注意力(Multi-HeadAttention)二、Encoder-Decoder架构详解2.1Seq2Seq任务与架构设计2.2核心组件解析2.2.1前馈
- 九章数学体系开源工程白皮书
《九章数学体系开源工程白皮书》前言:从公理冲突到场景适配的计算革命传统计算系统深陷“体系冲突陷阱”:阿基米德体系以“无穷可分”“绝对无穷不可达”为公理,适合描述开域,然而,99%以上的物理闭域场景(如星系边界、原子结构)是闭域。因“开域无穷假设”与“闭域有限性”的本质矛盾,必然产生类似芝诺悖论的逻辑错误——暗物质谜题、量子叠加态的概率描述、高维空间假设,本质上都是这种“公理-场景错配”的产物。如同
- Python pip配置全局镜像源
Python编程之道
Python人工智能与大数据Python编程之道pythonpip网络ai
Pythonpip配置全局镜像源关键词:Python、pip、全局镜像源、配置、国内镜像摘要:本文详细介绍了Python中pip配置全局镜像源的相关内容。首先阐述了配置全局镜像源的背景和目的,接着解释了核心概念,包括pip和镜像源的原理。然后详细说明了配置全局镜像源的具体操作步骤,包括不同操作系统下的配置方法,并给出了相应的Python代码示例。同时,还讲解了相关的数学模型(虽然在本主题中数学模型
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f