Anaconda安装
在清华大学 TUNA 镜像源选择对应的操作系统与所需的Python版本下载Anaconda安装包。Windows环境下的安装包直接执行.exe文件进行安装即可,Ubuntu环境下在终端执行
$ bash Anaconda2-4.3.1-Linux-x86_64.sh #Python 2.7版本
或者
$ bash Anaconda3-4.3.1-Linux-x86_64.sh #Python 3.5 版本
在安装的过程中,会询问安装路径,按回车即可。之后会询问是否将Anaconda安装路径加入到环境变量(.bashrc)中,输入yes,这样以后在终端中输入python即可直接进入Anaconda的Python版本(如果你的系统中之前安装过Python,自行选择yes or no)。安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容
安装完成后,我们可以看到:
安装完anaconda,就相当于安装了Python、IPython、集成开发环境Spyder、一些包等等。
这个和我们直接安装Python得到的Python shell用法一样。当然由于安装了anaconda,所以在这里好多包我们都可以使用了。
我们可以直接点击打开,也可以像下面这样在命令提示符中输入ipython
这个和我们pip install ipython安装的ipython用法一样。
直接点击打开,
我们直接点击打开,或者在命令提示符中输入ipython.exe notebook。
Spyder的最大优点就是模仿MATLAB的“工作空间”。
直接点击打开:
由于安装完anaconda就自带了Spyder集成开发环境了,所以不需要任何配置可以直接使用,但是其他你自己安装的IDE要想使用anaconda需要配置。
配置的方法我们可以去官网了解。下面我们以Pycharm为例。
其实如果anaconda在Pycharm之前安装,那么遇到解释器选择的时候会有一个选项,我们直接选择就OK了。如果在Pycharm之后安装,我们只需要手动设置一下Pycharm所用的解释器就行了。
其实安装完anaconda后,基本上就把我们常用的部分包安装好了,但是毕竟只是安装了一小部分(我们可以去官网查看安装了哪些包),还有一部分需要我们自己来安装。
查看已经安装的包我们可以在命令提示符中输入pip list或者用anaconda自带的包管理器conda(conda list)。
我们可以在命令提示符中输入pip install 包名,或者conda install 包名。conda和pip的用法基本上一致(更新?卸载?还不确定)。但是我们使用conda安装的时候不仅会安装当前你要安装的包还会提示更新其他已经安装过的包,所以我基本上都是直接用pip安装。
pip或conda不能安装的话,我们就下载文件安装,比如exe文件(双击安装)或者whl文件(pip安装)等等。
上面我们说的命令提示符基本上都是在系统盘上的操作。其实anaconda自带一个命令窗口。直接点击打开
所有可以在“命令提示符”中运行的都可以在这里运行,只不过文件的路径改变了而已。就比如我们在这两个命令窗口中分别输入ipython.exe notebook,默认的文件.ipynb存储在不同的位置
查询安装信息
$ conda info
查询当前已经安装的库
$ conda list
安装库(***代表库名称)
$ conda install ***
更新库
$ conda update ***
官方下载更新工具包的速度很慢,所以继续添加清华大学 TUNA提供的Anaconda仓库镜像,在终端或cmd中输入如下命令进行添加
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$ conda config --set show_channel_urls yes
$ conda install numpy #测试是否添加成功
之后会自动在用户根目录生成“.condarc”文件,Ubuntu环境下路径为~/.condarc,Windows环境下路径为C:\用户\your_user_name\.condarc
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: yes
如果要删除镜像,直接删除“.condarc”文件即可
在 Anaconda Prompt 窗口输入:
conda create -n tensorflow python=3.5
按回车。
表示创建 TensorFlow 依赖环境,TensorFlow 目前不支持Python3.6,这里我们使用Python3.5。
继续看控制台输出:
Fetching package metadata ...............
Solving package specifications: .
Package plan for installation in environment D:\Program Files\anaconda\envs\tensorflow:
The following NEW packages will be INSTALLED:
pip: 9.0.1-py35_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
python: 3.5.3-0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
setuptools: 27.2.0-py35_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
vs2015_runtime: 14.0.25123-0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
wheel: 0.29.0-py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
Proceed ([y]/n)? y
提示我们安装哪些依赖软件,输入‘y’,回车。
控制台继续输出:
python-3.5.3-0 100% |###############################| Time: 0:00:42 754.91 kB/s
setuptools-27. 100% |###############################| Time: 0:00:00 1.92 MB/s
wheel-0.29.0-p 100% |###############################| Time: 0:00:00 2.68 MB/s
pip-9.0.1-py35 100% |###############################| Time: 0:00:00 2.31 MB/s
#
# To activate this environment, use:
# > activate tensorflow
#
# To deactivate this environment, use:
# > deactivate tensorflow
#
# * for power-users using bash, you must source
#
开始下载安装依赖软件,我这里使用的是清华大学镜像仓库,所以下载速度很快。
安装 CPU 版本:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/cpu/tensorflow-1.1.0-cp35-cp35m-win_amd64.whl
如果控制台最终输出 如下信息表示安装成功。
你也可以打开 https://mirrors.tuna.tsinghua.edu.cn/tensorflow/ 选择合适的 whl 文件地址进行安装;或者打开https://mirrors.tuna.tsinghua.edu.cn/help/tensorflow/ 可视化选择 whl 版本。
Successfully installed numpy-1.12.1 protobuf-3.3.0 six-1.10.0 tensorflow-1.1.0 werkzeug-0.12.2
继续输入:
activate tensorflow
激活 TensorFlow 虚拟环境,当不使用 TensorFlow 时,使用 deactivate 关闭。
进入到 Anaconda 安装目录下 /envs /tensorflow 文件夹,继续在 Anaconda Prompt 窗口输入输入:
python.exe
回车后,复制复制如下内容拷贝到Anaconda Prompt,自动输出:
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
>>> sess.run(hello)
>>> a = tf.constant(10)
>>> b= tf.constant(32)
>>> sess.run(a+b)
>>>
输出:
...
b'Hello, TensorFlow!'
...
42
表示 TensorFlow 已经安装成功。
或许到这里我们并没有满足,我们在Anaconda自带的ipython 和Spyder中import tensorflow的时候一直失败,提示 No module named ‘tensorflow’,如下图,那是因为我们没有在tensorflow的环境下打开它们。
为了能在ipython 和Spyder中使用tensorflow,我们需要在tensorflow的环境中安装这两个的插件。
打开Anaconda Navigator
,选择Not installed
,找到 ipython和Spyder并安装,笔者这里已经安装好,所以在这个页面没有显示。
切换到installed
,可以看到两个都已经安装好,其实可以按照自己的需要安装。下图显示已经安装好的Spyder:
安装好插件后,我们需要测试一下。
在Anaconda Prompt中启动tensorflow环境,并运行ipython
,import tensorflow发现成功:
同样,在Anaconda Prompt中启动tensorflow环境,并运行Spyder
,等一会儿后会启动Spyder IDE,import tensorflow 同样成功:
注意:一定要启动tensorflow 环境下的Spyder才可以import tensorflow,不要去开始菜单运行Spyder,在那里是无法运行的,如:
在pycharm中使用tensorflow
习惯了使用PyCharm来开发,配置如下:
新建工程后在File-Setting–Project Interpreter选择tensorflow下的Python解释器,
例如我的解释器位置:
等部署完后便可跑个HelloWorld了import tensorflow as tf hello = tf.constant("Hello!TensorFlow") sess = tf.Session() print(sess.run(hello))
运行一下
起飞!
这种方式的好处:不用每次都 开启、关闭环境了。
(activate tensorflow 、deactivate tensorflow)