模拟赛 计算(时间限制:1s;空间限制 64MB)

题目描述

求(n^1+n^2+n^3+......+n^m)%p的值。

样例输入

2 2 5

样例输出

1

数据范围

n,p<=10^8,m<=10^17

题解

先说一下,这道题通法是矩阵乘法(话说……noip考这个?)。
linux机子上测的,只有快速幂30分。这里没打……
50分的打法用到了分治算法,原式可化为(n^1+n^2+n^3+......+n^(m div 2))+n^(m div 2)*(n^1+n^2+n^3+......+n^(m div 2))(红色部分要根据m的奇偶性特判)对于n^k可以快速幂过。剩下两部分可以继续分治下去直到括号内只剩n^1。这样看似复杂度很低,但应为每次分治都需要走到底,所以只是一种比普通暴力优越一点的算法。
#include
#include
#include
#include
#include
#include
#define MAXN 100005
#define ll long long
using namespace std;
ll n,p,m,ans;
ll ksm(ll x,ll y)
{
	ll da=1;
	while(y>0)
	   {if(y&1) da=(da*x)%p;
	    x=(x*x)%p;
	    y=y>>1;
	   }
	return da;
}
ll work(ll s)
{
	if(s==1) return n%p;
	ll sum,t;
	if(s%2==1)
	   {t=work(s/2)%p;
	    sum=(t+(ksm(n,s/2)%p)*(work((s+1)/2)%p)%p)%p;
	   }
	else
	   {t=work(s/2)%p;
	    sum=(t+((ksm(n,s/2)%p)*t)%p)%p;
	   }
	return sum;
}

int main()
{
	freopen("calc.in","r",stdin);
	freopen("calc.out","w",stdout);
	scanf("%lld%lld%lld",&n,&m,&p);
	n=n%p;
	ans=work(m);
	printf("%lld\n",ans);
	return 0;
}
但是,这种所发有一个很大的优化空间,即以k为关键字,记录(n^1+n^2+n^3+......+n^k)%p的值。这样能节省不少时间,我的做法是对k值进行hash。加上这个优化数据全部秒过……
#include
#include
#include
#include
#include
#include
#define MAXN 100005
#define ll long long
#define SU 49747
#define ad 7
using namespace std;
ll n,p,m,ans;
ll sh[500002];
ll ksm(ll x,ll y)
{
	ll da=1;
	while(y>0)
	   {if(y&1) da=(da*x)%p;
	    x=(x*x)%p;
	    y=y>>1;
	   }
	return da;
}
ll work(ll s)
{
	int loc=(s%SU)*ad;
	if(sh[loc]!=-1) return sh[loc];
	if(s==1) return n%p;
	ll sum,t;
	if(s%2==1)
	   {t=work(s/2)%p;
	    sum=(t+(ksm(n,s/2)%p)*(work((s+1)/2)%p)%p)%p;
	   }
	else
	   {t=work(s/2)%p;
	    sum=(t+((ksm(n,s/2)%p)*t)%p)%p;
	   }
	sh[loc]=sum;
	return sum;
}

int main()
{
	freopen("calc.in","r",stdin);
	freopen("calc.out","w",stdout);
	scanf("%lld%lld%lld",&n,&m,&p);
	n=n%p;
	memset(sh,-1,sizeof(sh));
	ans=work(m);
	printf("%lld\n",ans);
	return 0;
}
以下是正解:矩阵乘法。
#include
#include
#include
#include
#include
#include
#define MAXN 100005
#define ll long long
#define SU 49747
#define ad 7
using namespace std;
ll n,p,m,answer;
ll a[5],b[3][3],c[3][3];
void mul(ll A[3][3],ll B[3][3],ll ans[3][3])
{
	ll t[3][3];
	int i,j,k;
	for(i=1;i<=2;i++)
	for(j=1;j<=2;j++)
	   {t[i][j]=0;
		for(k=1;k<=2;k++)
	       t[i][j]=(t[i][j]+A[i][k]*B[k][j]%p)%p;
	   }
	for(i=1;i<=2;i++)
	for(j=1;j<=2;j++)
	   ans[i][j]=t[i][j];
}
void ksm(ll x)
{
	int i,j;
	for(i=1;i<=2;i++) c[i][i]=1;
	while(x>0)
	   {if(x&1) mul(b,c,c);
	    mul(b,b,b);
	    x=x>>1;
	   }
}
int main()
{
	freopen("calc.in","r",stdin);
	freopen("calc.out","w",stdout);
	scanf("%I64d%I64d%I64d",&n,&m,&p);
	n=n%p;
	if(m==1) {printf("%I64d\n",n); return 0;}
	a[1]=a[2]=n;
	b[1][1]=n; b[2][1]=1; b[2][2]=1;
	ksm(m-1);
	for(int i=1;i<=2;i++)
	   answer=(answer+(a[i]*c[i][1])%p)%p;
	printf("%I64d\n",answer);
	return 0;
}

你可能感兴趣的:(数论,其他)