import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
(x, y), _ = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
lr = 1e-3
for epoch in range(10):
for step,(x, y) in enumerate(train_db):
x = tf.reshape(x, [-1, 28 * 28])
with tf.GradientTape() as tape:
h1 = x @ w1 + b1
h1 = tf.nn.relu(h1)
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
out = h2 @ w3 + b3
y_onehot = tf.one_hot(y, depth=10)
loss = tf.reduce_mean(tf.square(y_onehot - out))
grads = tape.gradient(loss, [w1, w2, w3, b1, b2, b3])
w1.assign_sub(lr *grads[0])
w2.assign_sub(lr *grads[1])
w3.assign_sub(lr *grads[2])
b1.assign_sub(lr *grads[3])
b2.assign_sub(lr *grads[4])
b3.assign_sub(lr *grads[5])
if step % 100 == 0:
print(step, 'loss', float(loss))