- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
justtoomuchforyou
目标检测人工智能计算机视觉智驾
ECCV2022paper:[2205.07403]PillarNet:Real-TimeandHigh-PerformancePillar-based3DObjectDetectioncode:https://github.com/VISION-SJTU/PillarNet-LTS纯点云基于pillar3D检测模型网络比较SECOND基于voxel,one-stage,基于sparse3Dc
- CUDA加速cloud compare高度渲染算法
小充
图像加速OpenCVCUDAopencv算法计算机视觉
一、CPU版本算法为一个for循环内,将高度信息,映射到彩色空间,比较耗时的是正弦运算,还执行了多次乘除法,当图像大小为2038*4000时,处理耗时为170ms。原算法是处理点云,这里是输入一张深度图像,数据类型为intvoidsetRGBColorByBanding(cv::Mat*src,cv::Mat*dst,floatfreq=10.0f){ cv::TickMeterst; s
- PCL 稀疏点云上采样——最近邻插值与K近邻插值(C++详细过程版)
点云侠
PCL算法实现与优化c++开发语言算法3d
点云插值一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示算法原理参考自论文,代码由CSDN点云侠原创,首发于:2025年6月23日。一、算法原理1、原理概述 点云是一系列离散点的集合,点云密度越大,密集程度就越高,反之越低。实物目标上的点并不完全在点云上显示。在多次测量获取的点云数据中,实物目标上的一个固定点有可能在每一次测量数据上,也可能在某一次测量数据上,更可能在任何一次测量数据
- 云零售新中枢:定制化“开源AI智能名片+S2B2C商城小程序”驱动的沉浸式触点进化论
说私域
零售开源人工智能小程序
摘要:新零售的终极形态正加速向“全域云化”演进:前端零售终端(B)将不再局限于交易场所,而是进化为沉浸式体验中心、人机交互界面与高价值数据采集触点的三维复合体。消费者在此空间中完成“体验-嬉戏-交易”的全流程数字化生存,零售商则通过实时数据流重构供需关系。本文提出,基于定制开发的开源AI智能名片与S2B2C商城小程序深度融合所构建的“智能触点云”,正是实现该进化的核心引擎。这一架构通过开源技术降低
- 群核科技空间理解模型SpatialLM技术报告发布,3D空间识别精度达全球领先水平
CSDN资讯
科技3d
近日,空间理解模型SpatialLM发布首份技术报告,该模型来自于空间智能公司群核科技。据悉,该模型于今年3月正式开源,并在开源后迅速与DeepSeek-V3、Qwen2.5-Omni一起登上全球最大的开源社区HuggingFace全球趋势榜前三。图说:来自杭州的三个大模型共同登榜HuggingFace全球趋势榜前三作为一款将大语言模型扩展到3D空间理解任务中的模型,SpatialLM能从3D点云
- 点云从入门到精通技术详解100篇-基于参数平面拉伸的点云流形攻击(续)
格图素书
平面
目录3.3.4重构分析3.3.5消融实验4基于参数平面拉伸的点云流形攻击4.1点云流形攻击算法设计4.2点云流形攻击网络4.2.1基于TPS的参数平面拉伸4.2.2点云流形攻击对抗样本生成4.2.3训练损失4.3实验与分析4.3.1实验设置4.3.2攻击表现4.3.3攻击扰动幅度分析4.3.4可视化4.3.5消融实验4.3.6流形攻击的特殊效果5点云对抗攻击评测与分析系统5.1系统需求分析5.1.
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
格图素书
网络
目录前言国内外研究现状隧道监测研究现状表面重建研究现状2二维激光雷达三维扫描系统设计与实现2.1引言2.2系统设计2.2.1需求分析2.2.2方案设计2.3传感器方案选型2.3.1激光雷达测量技术介绍2.3.2激光雷达系统结构2.3.3激光雷达选型2.3.4IMU硬件选择2.42DLidar-IMU坐标系定义与变换2.4.1坐标系定义2.4.2激光雷达与IMU坐标变换2.5系统平台2.6系统扫描实
- 道路点云分割+边界提取+中心线方法总结
asdbhkasgb
相关论文深度学习计算机视觉人工智能算法3d
1.FastLIDAR-basedRoadDetectionUsingFullyConvolutionalNeuralNetworks2017流程点云数据转换为俯视图图像从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。对每个网格单元计算一些基础统计数据,例如:平
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- Matlab普通克里金插值及点云处理
心之澄澈
matlab开发语言点云
克里金插值是一种常用的地理空间插值方法,用于估计未知位置的属性值。在本文中,我们将介绍如何在Matlab中使用普通克里金插值方法进行点云处理。克里金插值的基本原理是根据已知点的属性值和它们之间的空间关系,估计未知点的属性值。普通克里金插值方法假设属性值是平稳的,并使用半变异函数来描述属性值的空间变异性。首先,我们需要准备一些数据。假设我们有一组点云数据,其中每个点都有一个属性值。以下是一个简单的示
- 使用MATLAB进行点云的圆形点定
EvktJava
matlab开发语言点云
MATLAB是一种功能强大的数值计算和科学编程工具,可以用于处理和分析各种数据类型,包括点云数据。在这篇文章中,我们将使用MATLAB来实现点云上的圆形点定。圆形点定是指在给定的点云数据中找到最佳拟合的圆形形状。首先,我们需要准备一个点云数据集。我们可以使用MATLAB的PointCloud对象来表示点云数据。假设我们有一个名为"pointCloud"的PointCloud对象,其中包含了一些二维
- Matlab 点云粗配准
CodeWG
matlab算法开发语言Matlab
Matlab点云粗配准点云配准是计算机视觉和机器人领域中的一个重要任务,它用于将两个或多个点云数据集对齐以实现对其的比较和融合。在本文中,我们将使用Matlab来实现点云的粗配准。粗配准是指在初始对齐阶段,通过一些初始的估计来近似地对齐点云数据。首先,我们需要加载点云数据。假设我们有两个点云数据集,分别为sourcePointCloud和targetPointCloud。这些点云数据可以通过Mat
- LM算法与TRF算法(含有在ICP配准情境下的两种算法对应代码)
小远披荆斩棘
三维点云工程算法实现算法
在ICP配准中,使用LM算法通常会遇到找到的对应点对数量不足的问题因为使用Levenberg-Marquardt(LM)算法进行最小二乘优化时,残差的数量小于变量的数量。实际应用:ICP配准过程:针对两个三维点云数据,两个点云上均有相互对应的3D关键点。我需要在每个点云上的每个关键点附近找到许多三维点(可以设置阈值范围),构成一个局部整体。对每个局部整体进行ICP配准。下面包含使用LM算法的ICP
- 逆向工程完全指南:从入门到精通的核心路径与应用全景
xMathematics
大数据人工智能逆向工程
逆向工程完全指南:从入门到精通的核心路径与应用全景逆向工程基础认知与价值解析逆向工程定义与技术原理逆向工程本质上是一种“从物理实体到数字模型”的技术转化过程。其核心在于通过对已有实物的测量和分析,构建出对应的数字模型。具体实现路径主要依赖于三维扫描与点云处理流程。三维扫描技术能够快速、准确地获取实物的表面形状和尺寸信息,生成大量的点云数据。这些点云数据就像是数字模型的“原材料”,后续需要进行点云处
- mmdetection3d系列--(1)安装步骤(无坑版)
h i i l
mmdetection3d目标检测计算机视觉自动驾驶深度学习pytorch
最近在看一些基于点云3d目标检测的文章,需要复现甚至修改一些算法,就找到了mmlab开源的mmdetection3d目标检测框架,方便后续学习。在安装的时候遇到一点坑,比如环境问题,安装完能跑demo但是不能跑训练测试问题等。在解决问题后还是完成了安装。在这里记录一下正确的安装流程,已备再次查阅,也给大家提供一点参考。首先建环境,最好是新建一个环境condacreate-ndetpython=3.
- 激光雷达与视频融合(DeepFusion)的多模态高精度目标定位
moonsims
人工智能
激光雷达与视频融合(DeepFusion)的多模态高精度目标定位激光雷达与视频融合的多模态高精度目标定位技术结合了激光雷达的高精度三维测距能力和视频传感器的丰富纹理信息,能够在复杂环境中实现更精准的目标检测、识别与定位。以下是该技术的主要应用场景:1.自动驾驶与智能交通高精度环境建模激光雷达提供厘米级精度的三维点云数据,结合视频的RGB信息,可构建带有色彩和纹理的高精度3D地图,用于自动驾驶车辆的
- 2025云服务器618-阿里云,腾讯云38一年,京东云28一年
java知多少
服务器服务器阿里云腾讯云京东云云服务器搭建教程
云服务器(ECS)和轻量应用服务器是云计算中的两种不同服务,它们各自具有独特的特点和适用场景。定位和特点云服务器(ECS)是一种提供计算能力的虚拟化服务,允许用户在云端运行各种应用程序。它具有高度的可扩展性和灵活性,可以根据需求进行配置和调整。ECS适用于需要高度定制化和灵活性的场景,用户可以根据实际需求进行资源配置和调整。轻量应用服务器则是一种更轻量级的计算服务,主要针对一些特定的应用场景,如小
- 自动驾驶---感知模型之BEVFormer
智能汽车人
聊聊自动驾驶技术自动驾驶人工智能机器学习
1前言在自动驾驶领域,传统的感知方法通常基于图像或点云的局部视角,这会导致信息的遮挡和理解的局限性。而鸟瞰图(BEV)视角可以提供全局的场景信息,更适合于自动驾驶中的目标检测、轨迹预测等任务。然而,将不同视角的传感器数据转换到BEV空间并进行有效融合是一个挑战。BEVFormer的提出旨在解决这一问题,通过Transformer架构实现高效的多传感器数据融合和BEV特征表示学习。BEVFormer
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 什么是三维重建?如何从二维图像获取三维信息?——从原理到实战的深度解析
唐宇迪(学习规划+技术答疑)
人工智能深度学习神经网络计算机视觉三维重建机器学习pytorch
大家好,我是唐宇迪。这几年带学员做计算机视觉项目时,发现三维重建是绕不开的核心技术——有人用单目摄像头重建物体模型,有人用多视图构建建筑BIM模型,还有人在医疗领域通过CT图像重建器官三维结构。但新手常被相机标定、对极几何、点云配准等概念困扰,甚至混淆三维重建与三维建模的区别。作为计算机视觉的重要分支,三维重建让二维图像拥有了深度信息,在工业检测、医疗诊断、元宇宙等领域发挥关键作用。今天这篇600
- las 点云可视化
目录点云灰色可视化las点云彩色可视化点云灰色可视化importlaspyimportnumpyasnpimportopen3daso3ddefread_las_to_o3d(filename):#读取las文件las=laspy.read(filename)#提取坐标数据points=np.vstack((las.x,las.y,las.z)).transpose()#创建Open3D点云对象p
- PCL 点云按百分比添加高斯随机噪声(C++详细过程版)
点云侠
PCL算法实现与优化c++开发语言算法计算机视觉3d
目录一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,首发于:2025年6月12日。在研究中,为了验证算法的鲁棒性往往需要添加噪声点,目前:PCL点云添加高斯噪声并保存一文中的方法,严格意义上来说是添加高斯挠动,而不是噪声点,全网所有的添加高斯噪声的代码也都是实现的这一功能(90%都是抄这篇的)。本文给出在点云配准研究中,标准的高斯随机噪声添加方法。一、算法原理
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- VINS-Fusion-Vehicle 项目使用教程
段琳惟
VINS-Fusion-Vehicle项目使用教程VINS-Fusion-Vehicle对VINS-Fusion的修改,以适配地面小车进行定位建图及导航,可实时采集生成半稠密点云地图和栅格地图。项目地址:https://gitcode.com/gh_mirrors/vi/VINS-Fusion-Vehicle1.项目介绍VINS-Fusion-Vehicle是基于VINS-Fusion的一个修改版
- 点云从入门到精通技术详解100篇-车载激光雷达路面检测
格图素书
计算机视觉YOLO点云
目录前言国内外研究现状车载激光雷达系统研究现状道路检测研究现状车载激光雷达测量系统集成2.1车载激光雷达测量系统原理2.1.1车载激光雷达测量系统硬件组成模块2.1.1.1车载激光雷达数据采集模块2.1.1.2车载激光雷达定位定姿模块2.1.2车载软件处理系统2.1.2.1车载激光雷达测量系统轨迹解算2.1.2.2车载激光雷达测量系统点云解算2.2双模车载激光雷达系统设计2.2.1轨迹误差分析本文
- 【Vulkan项目实战笔记】3D Tiles渲染器1-脚手架搭建
程序员Xu
笔记3d图形渲染
一、项目简介项目技术栈CesiumNative+DearImGui+Vulkan1.3三维地理可视化系统详细项目功能说明1.3DTiles渲染功能实现完整的3DTiles格式解析与加载引擎支持LOD(LevelofDetail)分层细节渲染可加载建筑模型、点云等3DTiles资产示例:加载城市级建筑3DTiles数据,实现流畅的缩放浏览2.WGS84椭球体渲染精确呈现地球椭球体模型支持WGS84坐
- 最新Lidar激光点云数据处理及可视化软件汇总
刘一哥GIS
《点云处理与建模应用》arcgis刘一哥点云pix4d点云分类
《点云数据处理与应用专栏》介绍:讲述目前最先进点云数据采集手段(三维激光扫描仪、无人机倾斜摄影测量、激光雷达Lidar等)、点云数据后处理软件(CloudCompare、Pix4D、Lidar360、PCL库、Globalmapper等)的实验操作教程,适用于在校学生、老师及三维建模从业者。严重声明:本文由CSDN博主[刘一哥GIS]原创,原文地址:https://geostorm.blog.cs
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep