1.导数定义:
导数和微分的概念
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x} f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0) (1)
或者:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} f′(x0)=x→x0limx−x0f(x)−f(x0) (2)
2.左右导数导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的左、右导数分别定义为:
左导数: f ′ − ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x) f′−(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
右导数: f ′ + ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 {{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}} f′+(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3.函数的可导性与连续性之间的关系
Th1: 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 x 0 x_0 x0处可导
Th2: 若函数在点 x 0 x_0 x0处可导,则 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续,反之则不成立。即函数连续不一定可导。
Th3: f ′ ( x 0 ) {f}'({{x}_{0}}) f′(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}}) ⇔f′−(x0)=f′+(x0)
4.平面曲线的切线和法线
切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}}) y−y0=f′(x0)(x−x0)
法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5.四则运算法则
设函数 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x)]在点 x x x可导则
(1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v{)}'={u}'\pm {v}' (u±v)′=u′±v′ d ( u ± v ) = d u ± d v d(u\pm v)=du\pm dv d(u±v)=du±dv
(2) ( u v ) ′ = u v ′ + v u ′ (uv{)}'=u{v}'+v{u}' (uv)′=uv′+vu′ d ( u v ) = u d v + v d u d(uv)=udv+vdu d(uv)=udv+vdu
(3) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0) (vu)′=v2vu′−uv′(v=0) d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}} d(vu)=v2vdu−udv
6.基本导数与微分表
(1) y = c y=c y=c(常数) y ′ = 0 {y}'=0 y′=0 d y = 0 dy=0 dy=0
(2) y = x α y={{x}^{\alpha }} y=xα( α \alpha α为实数) y ′ = α x α − 1 {y}'=\alpha {{x}^{\alpha -1}} y′=αxα−1 d y = α x α − 1 d x dy=\alpha {{x}^{\alpha -1}}dx dy=αxα−1dx
(3) y = a x y={{a}^{x}} y=ax y ′ = a x ln a {y}'={{a}^{x}}\ln a y′=axlna d y = a x ln a d x dy={{a}^{x}}\ln adx dy=axlnadx
特例: ( e x ) ′ = e x ({{{e}}^{x}}{)}'={{{e}}^{x}} (ex)′=ex d ( e x ) = e x d x d({{{e}}^{x}})={{{e}}^{x}}dx d(ex)=exdx
(4) y = log a x y={{\log }_{a}}x y=logax y ′ = 1 x ln a {y}'=\frac{1}{x\ln a} y′=xlna1
d y = 1 x ln a d x dy=\frac{1}{x\ln a}dx dy=xlna1dx
特例: y = ln x y=\ln x y=lnx ( ln x ) ′ = 1 x (\ln x{)}'=\frac{1}{x} (lnx)′=x1 d ( ln x ) = 1 x d x d(\ln x)=\frac{1}{x}dx d(lnx)=x1dx
(5) y = sin x y=\sin x y=sinx
y ′ = cos x {y}'=\cos x y′=cosx d ( sin x ) = cos x d x d(\sin x)=\cos xdx d(sinx)=cosxdx
(6) y = cos x y=\cos x y=cosx
y ′ = − sin x {y}'=-\sin x y′=−sinx d ( cos x ) = − sin x d x d(\cos x)=-\sin xdx d(cosx)=−sinxdx
(7) y = tan x y=\tan x y=tanx
y ′ = 1 cos 2 x = sec 2 x {y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x y′=cos2x1=sec2x d ( tan x ) = sec 2 x d x d(\tan x)={{\sec }^{2}}xdx d(tanx)=sec2xdx
(8) y = cot x y=\cot x y=cotx y ′ = − 1 sin 2 x = − csc 2 x {y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x y′=−sin2x1=−csc2x d ( cot x ) = − csc 2 x d x d(\cot x)=-{{\csc }^{2}}xdx d(cotx)=−csc2xdx
(9) y = sec x y=\sec x y=secx y ′ = sec x tan x {y}'=\sec x\tan x y′=secxtanx
d ( sec x ) = sec x tan x d x d(\sec x)=\sec x\tan xdx d(secx)=secxtanxdx
(10) y = csc x y=\csc x y=cscx y ′ = − csc x cot x {y}'=-\csc x\cot x y′=−cscxcotx
d ( csc x ) = − csc x cot x d x d(\csc x)=-\csc x\cot xdx d(cscx)=−cscxcotxdx
(11) y = arcsin x y=\arcsin x y=arcsinx
y ′ = 1 1 − x 2 {y}'=\frac{1}{\sqrt{1-{{x}^{2}}}} y′=1−x21
d ( arcsin x ) = 1 1 − x 2 d x d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arcsinx)=1−x21dx
(12) y = arccos x y=\arccos x y=arccosx
y ′ = − 1 1 − x 2 {y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}} y′=−1−x21 d ( arccos x ) = − 1 1 − x 2 d x d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx d(arccosx)=−1−x21dx
(13) y = arctan x y=\arctan x y=arctanx
y ′ = 1 1 + x 2 {y}'=\frac{1}{1+{{x}^{2}}} y′=1+x21 d ( arctan x ) = 1 1 + x 2 d x d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx d(arctanx)=1+x21dx
(14) y = arc cot x y=\operatorname{arc}\cot x y=arccotx
y ′ = − 1 1 + x 2 {y}'=-\frac{1}{1+{{x}^{2}}} y′=−1+x21
d ( arc cot x ) = − 1 1 + x 2 d x d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx d(arccotx)=−1+x21dx
(15) y = s h x y=shx y=shx
y ′ = c h x {y}'=chx y′=chx d ( s h x ) = c h x d x d(shx)=chxdx d(shx)=chxdx
(16) y = c h x y=chx y=chx
y ′ = s h x {y}'=shx y′=shx d ( c h x ) = s h x d x d(chx)=shxdx d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设 y = f ( x ) y=f(x) y=f(x)在点 x x x的某邻域内单调连续,在点 x x x处可导且 f ′ ( x ) ≠ 0 {f}'(x)\ne 0 f′(x)=0,则其反函数在点 x x x所对应的 y y y处可导,并且有 d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1
(2) 复合函数的运算法则:若 μ = φ ( x ) \mu =\varphi(x) μ=φ(x) 在点 x x x可导,而 y = f ( μ ) y=f(\mu) y=f(μ)在对应点 μ \mu μ( μ = φ ( x ) \mu =\varphi (x) μ=φ(x))可导,则复合函数 y = f ( φ ( x ) ) y=f(\varphi (x)) y=f(φ(x))在点 x x x可导,且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) {y}'={f}'(\mu )\cdot {\varphi }'(x) y′=f′(μ)⋅φ′(x)
(3) 隐函数导数 d y d x \frac{dy}{dx} dxdy的求法一般有三种方法:
1)方程两边对 x x x求导,要记住 y y y是 x x x的函数,则 y y y的函数是 x x x的复合函数.例如 1 y \frac{1}{y} y1, y 2 {{y}^{2}} y2, l n y ln y lny, e y {{{e}}^{y}} ey等均是 x x x的复合函数.
对 x x x求导应按复合函数连锁法则做.
2)公式法.由 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0知 d y d x = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)} dxdy=−F′y(x,y)F′x(x,y),其中, F ′ x ( x , y ) {{{F}'}_{x}}(x,y) F′x(x,y),
F ′ y ( x , y ) {{{F}'}_{y}}(x,y) F′y(x,y)分别表示 F ( x , y ) F(x,y) F(x,y)对 x x x和 y y y的偏导数
3)利用微分形式不变性
8.常用高阶导数公式
(1) ( a x ) ( n ) = a x ln n a ( a > 0 ) ( e x ) ( n ) = e x ({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}} (ax)(n)=axlnna(a>0)(ex)(n)=ex
(2) ( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}}) (sinkx)(n)=knsin(kx+n⋅2π)
(3) ( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}}) (coskx)(n)=kncos(kx+n⋅2π)
(4) ( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n ({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}} (xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5) ( ln x ) ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! x n (\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}} (lnx)(n)=(−1)(n−1)xn(n−1)!
(6)莱布尼兹公式:若 u ( x ) , v ( x ) u(x)\,,v(x) u(x),v(x)均 n n n阶可导,则
( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}} (uv)(n)=i=0∑ncniu(i)v(n−i),其中 u ( 0 ) = u {{u}^{({0})}}=u u(0)=u, v ( 0 ) = v {{v}^{({0})}}=v v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数 f ( x ) f(x) f(x)满足条件:
(1)函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x)\le f({{x}_{0}}) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x)\ge f({{x}_{0}}) f(x)≥f(x0),
(2) f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处可导,则有 f ′ ( x 0 ) = 0 {f}'({{x}_{0}})=0 f′(x0)=0
Th2:(罗尔定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
(3) f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b);
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ′ ( ξ ) = 0 {f}'(\xi )=0 f′(ξ)=0
Th3: (拉格朗日中值定理)
设函数 f ( x ) f(x) f(x)满足条件:
(1)在 [ a , b ] [a,b] [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;
则在 ( a , b ) (a,b) (a,b)内一存在个$\xi $,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a}={f}'(\xi ) b−af(b)−f(a)=f′(ξ)
Th4: (柯西中值定理)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件:
(1) 在 [ a , b ] [a,b] [a,b]上连续;
(2) 在 ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) {f}'(x) f′(x), g ′ ( x ) {g}'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 {g}'(x)\ne 0 g′(x)=0
则在 ( a , b ) (a,b) (a,b)内存在一个$\xi $,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10.洛必达法则
法则Ⅰ ( 0 0 \frac{0}{0} 00型)
设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → x 0 f ( x ) = 0 , lim x → x 0 g ( x ) = 0 \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0 x→x0limf(x)=0,x→x0limg(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)在 x 0 {{x}_{0}} x0的邻域内可导,(在 x 0 {{x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0;
lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)。
法则 I ′ {{I}'} I′ ( 0 0 \frac{0}{0} 00型)设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim x → ∞ f ( x ) = 0 , lim x → ∞ g ( x ) = 0 \underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0 x→∞limf(x)=0,x→∞limg(x)=0;
存在一个 X > 0 X>0 X>0,当 ∣ x ∣ > X \left| x \right|>X ∣x∣>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x)存在(或$\infty $)。
则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
法则Ⅱ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型) 设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 满足条件:
lim x → x 0 f ( x ) = ∞ , lim x → x 0 g ( x ) = ∞ \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty x→x0limf(x)=∞,x→x0limg(x)=∞;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) 在 x 0 {{x}_{0}} x0 的邻域内可导(在 x 0 {{x}_{0}} x0处可除外)且 g ′ ( x ) ≠ 0 {g}'\left( x \right)\ne 0 g′(x)=0; lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg′(x)f′(x) 存在(或$\infty ) 。 则 )。 则 )。则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)$ 同理法则 I I ′ {I{I}'} II′ ( ∞ ∞ \frac{\infty }{\infty } ∞∞ 型)仿法则 I ′ {{I}'} I′ 可写出。
11.泰勒公式
设函数 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 {{x}_{0}} x0的任意点 x x x,在 x 0 {{x}_{0}} x0与 x x x之间至少存在
一个 ξ \xi ξ,使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) +\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x) +n!f(n)(x0)(x−x0)n+Rn(x)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处的 n n n阶泰勒余项。
令 x 0 = 0 {{x}_{0}}=0 x0=0,则 n n n阶泰勒公式
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x) f(x)=f(0)+f′(0)x+2!1f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)……(1)
其中 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 {{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}} Rn(x)=(n+1)!f(n+1)(ξ)xn+1,$\xi 在 0 与 在0与 在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在 x 0 = 0 {{x}_{0}}=0 x0=0处的泰勒公式
(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ {{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }} ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ
或 = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) =1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}}) =1+x+2!1x2+⋯+n!1xn+o(xn)
(2) sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi ) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或 = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + o ( x n ) =x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}}) =x−3!1x3+⋯+n!xnsin2nπ+o(xn)
(3) cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + x n + 1 ( n + 1 ) ! cos ( ξ + n + 1 2 π ) \cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi ) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或 = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + o ( x n ) =1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}}) =1−2!1x2+⋯+n!xncos2nπ+o(xn)
(4) ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或 = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) =x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}}) =x−21x2+31x3−⋯+(−1)n−1nxn+o(xn)
(5) ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn
+ m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 +\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}} +(n+1)!m(m−1)⋯(m−n+1)xn+1(1+ξ)m−n−1
或 ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ {{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots (1+x)m=1+mx+2!m(m−1)x2+⋯ , + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}}) +n!m(m−1)⋯(m−n+1)xn+o(xn)
12.函数单调性的判断
Th1: 设函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)区间内可导,如果对 ∀ x ∈ ( a , b ) \forall x\in (a,b) ∀x∈(a,b),都有 f ′ ( x ) > 0 f\,'(x)>0 f′(x)>0(或 f ′ ( x ) < 0 f\,'(x)<0 f′(x)<0),则函数 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内是单调增加的(或单调减少)
Th2: (取极值的必要条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处可导,且在 x 0 {{x}_{0}} x0处取极值,则 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0。
Th3: (取极值的第一充分条件)设函数 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0的某一邻域内可微,且 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0(或 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0处连续,但 f ′ ( x 0 ) f\,'({{x}_{0}}) f′(x0)不存在。)
(1)若当 x x x经过 x 0 {{x}_{0}} x0时, f ′ ( x ) f\,'(x) f′(x)由“+”变“-”,则 f ( x 0 ) f({{x}_{0}}) f(x0)为极大值;
(2)若当 x x x经过 x 0 {{x}_{0}} x0时, f ′ ( x ) f\,'(x) f′(x)由“-”变“+”,则 f ( x 0 ) f({{x}_{0}}) f(x0)为极小值;
(3)若 f ′ ( x ) f\,'(x) f′(x)经过 x = x 0 x={{x}_{0}} x=x0的两侧不变号,则 f ( x 0 ) f({{x}_{0}}) f(x0)不是极值。
Th4: (取极值的第二充分条件)设 f ( x ) f(x) f(x)在点 x 0 {{x}_{0}} x0处有 f ′ ′ ( x ) ≠ 0 f''(x)\ne 0 f′′(x)=0,且 f ′ ( x 0 ) = 0 f\,'({{x}_{0}})=0 f′(x0)=0,则 当 f ′ ′ ( x 0 ) < 0 f'\,'({{x}_{0}})<0 f′′(x0)<0时, f ( x 0 ) f({{x}_{0}}) f(x0)为极大值;
当 f ′ ′ ( x 0 ) > 0 f'\,'({{x}_{0}})>0 f′′(x0)>0时, f ( x 0 ) f({{x}_{0}}) f(x0)为极小值。
注:如果 f ′ ′ ( x 0 ) < 0 f'\,'({{x}_{0}})<0 f′′(x0)<0,此方法失效。
13.渐近线的求法
(1)水平渐近线 若 lim x → + ∞ f ( x ) = b \underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b x→+∞limf(x)=b,或 lim x → − ∞ f ( x ) = b \underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b x→−∞limf(x)=b,则
y = b y=b y=b称为函数 y = f ( x ) y=f(x) y=f(x)的水平渐近线。
(2)铅直渐近线 若 lim x → x 0 − f ( x ) = ∞ \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty x→x0−limf(x)=∞,或 lim x → x 0 + f ( x ) = ∞ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty x→x0+limf(x)=∞,则
x = x 0 x={{x}_{0}} x=x0称为 y = f ( x ) y=f(x) y=f(x)的铅直渐近线。
(3)斜渐近线 若 a = lim x → ∞ f ( x ) x , b = lim x → ∞ [ f ( x ) − a x ] a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax] a=x→∞limxf(x),b=x→∞lim[f(x)−ax],则
y = a x + b y=ax+b y=ax+b称为 y = f ( x ) y=f(x) y=f(x)的斜渐近线。
14.函数凹凸性的判断
Th1: (凹凸性的判别定理)若在I上 f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0(或 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0),则 f ( x ) f(x) f(x)在I上是凸的(或凹的)。
Th2: (拐点的判别定理1)若在 x 0 {{x}_{0}} x0处 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0,(或 f ′ ′ ( x ) f''(x) f′′(x)不存在),当 x x x变动经过 x 0 {{x}_{0}} x0时, f ′ ′ ( x ) f''(x) f′′(x)变号,则 ( x 0 , f ( x 0 ) ) ({{x}_{0}},f({{x}_{0}})) (x0,f(x0))为拐点。
Th3: (拐点的判别定理2)设 f ( x ) f(x) f(x)在 x 0 {{x}_{0}} x0点的某邻域内有三阶导数,且 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0, f ′ ′ ′ ( x ) ≠ 0 f'''(x)\ne 0 f′′′(x)=0,则 ( x 0 , f ( x 0 ) ) ({{x}_{0}},f({{x}_{0}})) (x0,f(x0))为拐点。
15.弧微分
d S = 1 + y ′ 2 d x dS=\sqrt{1+y{{'}^{2}}}dx dS=1+y′2dx
16.曲率
曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}} k=(1+y′2)23∣y′′∣。
对于参数方程KaTeX parse error: No such environment: align at position 15: \left\{ \begin{̲a̲l̲i̲g̲n̲}̲ & x=\varphi (…
k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}} k=[φ′2(t)+ψ′2(t)]23∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣。
17.曲率半径
曲线在点 M M M处的曲率 k ( k ≠ 0 ) k(k\ne 0) k(k=0)与曲线在点 M M M处的曲率半径 ρ \rho ρ有如下关系: ρ = 1 k \rho =\frac{1}{k} ρ=k1。