- Matlab多种算法解决未来杯B的多分类问题
Subject.625Ruben
算法分类机器学习数学建模未来杯matlab人工智能
1.读取数据首先,我们从Excel文件中读取训练集和测试集:2.训练集划分我们将80%的数据用于训练,20%用于验证。3.训练多个模型我们选取8种常见分类模型,并存储预测结果。fori=1:length(modelNames)switchmodelNames{i}case'MultinomialLogisticRegression'B=mnrfit(X_train,Y_train,'model',
- NLP-二分类的应用-区分外卖评论好评/差评
左岸Jason
算法pythonkafkaflinkelasticsearch
目录一、概念二、二分类实战-划分好评/差评1.处理步骤2.实战代码一、概念文本分类一般可以分为二分类、多分类、多标签分类三种情况。二分类是指将一组文本分成两个类(0或1),比较常见的应用如垃圾邮件分类、电商网站的用户评价数据的正负面分类等,多分类是指将文本分成若干个类中的某一个类,比如说门户网站新闻可以归属到不同的栏目中(如政治、体育、社会、科技、金融等栏目)去。多标签分类指的是可以将文本分成若干
- 数组中最长递增子序列问题的深入研究
cloudman08
算法
目录摘要一、引言二、问题定义三、问题分析3.1暴力枚举法的困境3.2动态规划的应用3.3二分查找优化四、算法设计4.1动态规划算法4.2二分查找优化算法4.3代码实现(Python)4.4代码解释五、复杂度分析5.1动态规划算法复杂度5.2二分查找优化算法复杂度六、实际应用6.1数据分析6.2生物信息学6.3信号处理七、结论摘要在数组处理的算法领域,寻找最长递增子序列是一个经典且具有广泛应用的问题
- 现代游戏UI架构深度解析——以UIController为核心的模块化界面管理系统
晴空了无痕
项目框架游戏ui架构
一、架构全景与设计哲学本文将以重构后的UIController为核心,深入探讨Unity引擎下的高效UI管理方案。该体系采用"分层-分治"设计理念,通过界面生命周期管理、动态适配策略、资源优化机制三个维度的协同工作,构建了适应复杂交互需求的弹性UI框架。我们将从以下关键维度展开技术分析:二、核心模块技术解析2.1中枢控制器(UIController)namespaceGameCore.Interf
- (二分 数学推导区间 两个数组的距离值)leetcode 1385
维齐洛波奇特利(male)
算法
数学推导:设arr1[i]=x则|x-arr2[j]|x+d而这个数t有三种可能1.刚好等于x-d不满足条件2.大于x-d但是小于等于x+d不满足条件3.大于x+d满足条件那arr2中小于t的值呢,因为t>=x-d所以arr2&arr1,vector&arr2,intd){sort(arr2.begin(),arr2.end());intans=0;for(autox:arr1){autot=ra
- 最新版!“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门到精通)
不入流HarmonyOS开发
HarmonyOS鸿蒙鸿蒙学习鸿蒙开发harmonyos移动开发前端学习android
前言最新数据显示,在中国智能手机市场,鸿蒙操作系统的份额达到10%,鸿蒙开发者数量更是超过240万,鸿蒙生态已经与iOS、安卓形成了“三分天下”的格局,成为当下的风口。如今,为了抢占巨大的鸿蒙市场,Top20移动互联网公司中近半数已经启动了鸿蒙原生应用开发,其中包括支付宝、美团等各大巨头。鸿蒙的崛起,相关岗位需求迅速增长。就业市场中,鸿蒙人才紧缺,已成为炙手可热的宝贵资源。包括美团、京东、网易在内
- DAY01 二分查找 与 双指针
Useee
算法leetcode数据结构
704.二分查找-力扣(LeetCode)需要注意两种边界情况下代码细节的处理,在【】区间下,右指针的最大值是有意义的,所以right=nums.size()-1,left&nums,inttarget){intleft=0;intright=nums.size()-1;//[1,right]while(lefttarget){right=middle-1;}elseif(nums[middle]
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- Vue3 + TypeScript 实战经验:2025年高效开发指南
ctrl_cv工程师¥
typescriptjavascript前端
在2024年的前端工程化浪潮中,Vue3与TypeScript已成为企业级应用的黄金组合。本文将基于多个真实项目经验,从工程规范、类型安全、性能优化三个维度,分享实战技巧与避坑指南。一、工程配置:构建坚如磐石的基础1.脚手架选择与优化1.1推荐方案:使用Vite+create-vue初始化项目(2024年默认模板已集成TypeScript)关键配置://vite.config.tsexportde
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 入门到入土,Java学习 day17(Lambda表达式,集合进阶)
慕容魏
java学习python
publicstaticStringtoString(数组)把数组拼接成一个字符串publicstaticintbinarySearch(数组,查找的元素)二分查找法找元素publicstaticint[]copyOf(原数组,新数组长度)拷贝数组长度小就拷贝几个,长度一样完全拷贝,长度大后面补默认值publicstaticint[]copyOfRange(原数组,起始索引,结束索引)拷贝数组(指
- 三分钟掌握音视频信息查询 | 在 Rust 中优雅地集成 FFmpeg
Yeauty
音视频rustffmpeg
前言在音视频处理领域,开发者常常需要获取媒体文件的详细信息,如时长、格式、元数据,以及音视频流的编码参数等。这些信息对于媒体管理、转码调度、播放控制等场景至关重要。然而,直接使用FFmpeg命令行工具或其原生API存在以下挑战:命令行工具的复杂性:FFmpeg的命令行参数众多且复杂,使用不当可能导致错误。例如,处理包含空格的文件名时,需要特别注意正确的转义和引用方式,否则可能导致无法识别文件名的问
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 面试基础---面试刷题推荐 二分查找算法:搜索旋转排序数组
WeiLai1112
leetcode刷题算法面试数据结构架构分布式职场和发展java
二分查找算法:搜索旋转排序数组引言:二分查找的核心思想二分查找是一种高效的搜索算法,适用于有序数组。它的核心思想是通过不断缩小搜索范围,将时间复杂度从O(n)降低到O(logn)。本文将以“搜索旋转排序数组”为例,详细讲解二分查找的实现,并提供易于记忆的代码模板。一、问题描述1.1题目假设一个按升序排列的数组在某个未知的点上进行了旋转(例如,[0,1,2,4,5,6,7]可能变为[4,5,6,7,
- 群体智能优化算法-黄金正余弦优化算法(含Matlab源代码)
EOL_HRZ
算法matlab开发语言群体智能优化优化
摘要黄金正余弦优化算法(GoldenSineAlgorithm,GoldSA)是一种数学启发式算法,基于黄金分割系数(GoldenRatio)以及正余弦函数的随机扰动机制来更新解的位置。该算法通过在迭代过程中不断利用黄金分割比例来调整搜索范围,同时结合正弦与余弦变化,为个体提供多样化的全局搜索与局部微调能力。本文提供了GoldSA的核心思想与完整MATLAB代码,并附上中文详细注释,以帮助读者深入
- Websoft9 运维面板:GitOps 助力简化持续部署流程
运维
传统部署的痛点与GitOps的革新在DevOps实践中,手动配置环境、碎片化脚本管理和版本回滚困难等问题长期困扰开发者。而GitOps通过将基础设施代码化、版本化,正在成为持续部署的黄金标准。Websoft9作为GitHub热门开源运维工具,将GitOps理念深度融入面板设计,实现了从“代码提交”到“生产发布”的自动化闭环。本文将结合具体操作,解析其如何以低门槛方案赋能企业级部署流程。Websof
- 代码随想录数组链表总结(day1-day4)
文化说不定
链表算法数据结构python
数组1.二分查找习惯写左闭右闭,终止条件尽量放最前面,放后面有可能递归再经过一次处理就出不来了顺序存储查找定位的题目优先想是否为二分查找的变形(二分查找的条件太苛刻了感觉,但是效果也很好,所以如果是顺序存储的话,尽量先想二分查找)classSolution:defsearch(self,nums:List[int],target:int)->int:defbinary(low,high):iflo
- 二级Python必考!一文吃透程序分支结构:单/双/多分支实战解析
奕澄羽邦
pythonlinux开发语言
一、为什么分支结构是Python考试的"拦路虎"?根据近三年NCRE二级Python真题数据分析,程序流程控制类题目平均分仅为62.7分,主要痛点集中在:语法细节易错:缩进错误、条件符号混淆(=vs==)逻辑思维薄弱:无法正确绘制分支流程图实战应用脱节:熟悉基本语法却不会设计实际场景的条件判断以2023年6月考题为例:python#根据输入分数输出评价(含小数点后1位)score=float(in
- 【敏捷】罗恩·杰弗里斯用户故事3C原则:用卡片、对话与确认构建敏捷需求的黄金三角
田辛 | 田豆芽
DevOps项目管理3C原则敏捷需求罗恩·杰弗里斯黄金三角
在敏捷开发领域,用户故事常被视为“需求的最小单位”,但如何让这些故事真正成为团队协作的指南针?今天,我们以一杯咖啡的时间,深入探讨罗恩·杰弗里斯提出的用户故事3C原则——卡片(Card)、对话(Conversation)、确认(Confirmation)。这不仅是一套方法论,更是一把打开高效协作之门的钥匙。一、3C原则的本质:从“纸面需求”到“动态共识”卡片(Card):需求的灵魂容器卡片不是简单
- 代码随想录算法训练营第一天| 704. 二分查找、27. 移除元素
Anjoubecoding
c++算法数据结构leetcode
一、Leetcode704二分查找题目链接:Leetcode704这个题目在之前秋招准备的时候就刷了,好几个月没刷又忘了这个题目的思想,二分法的使用前提是有序数组,这里主要是看查找区间是左闭右闭还是左闭右开,这两种方法都可以,不同方法对应着不同的while循环条件(是left&nums,inttarget){intleft=0,right=nums.size()-1,middle=(left+ri
- 百科词条创建:企业网络营销不可忽视的权威背书
百科创建老魏
百度
百科创建老魏:高质高效创建各类百科词条!在信息爆炸的互联网时代,企业官网可能被海量信息淹没,朋友圈推广容易被划为广告,短视频内容转瞬即逝...当用户真正想要了解一个品牌时,他们往往会在搜索框输入"XX公司怎么样"——这时,百度百科、抖音百科、搜狗百科等权威平台的词条展示,就是企业赢得用户信任的黄金名片。为什么说百科创建是网络推广的决胜环节?1、权威认证效应:百科词条自带"网络身份证"属性,87%的
- 力扣-数组-69 x的平方根
夏末秋也凉
力扣#数组leetcode数据结构算法
思路和时间复杂度思路:二分寻找符合要求的元素,在mid小于当时的元素时,记录更新结果,这样可以满足要求,而且由于是计算平方,所以可以右边界为之前的一半时间复杂度:代码classSolution{public:intmySqrt(intx){if(x==0)return0;if(x==1)return1;//左闭右闭区间longlongleft=0,right=x/2;longlongcur=0;w
- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- 暑假算法刷题日记 Day 6
mjh_yylx
算法刷题打卡算法
今天继续刷完二分查找,还有最后五个题二分查找就结束啦!023、P3743小鸟的设备题目背景小鸟有nnn个可同时使用的设备。题目描述第iii个设备每秒消耗aia_iai个单位能量。能量的使用是连续的,也就是说能量不是某时刻突然消耗的,而是匀速消耗。也就是说,对于任意实数,在kkk秒内消耗的能量均为k×aik\timesa_ik×ai单位。在开始的时候第iii个设备里存储着bib_ibi个单位能量。同
- 每天一道算法题【蓝桥杯】【山脉数组的峰顶索引】
桦0
题解算法蓝桥杯c++leetcode
思路二分查找算法注意二段性两段性为peak前arr[mid]arr[mid+1]#define_CRT_SECURE_NO_WARNINGS1#includeusingnamespacestd;classSolution{public:intpeakIndexInMountainArray(vector&arr){intleft=0,right=arr.size()-1,mid=0;//置二分查找
- [转载]快速学习的黄金法则——公开你的学习
啾啾大学习
水学习AI时代学习方法学习方法
作者:ShawnWang(swyx)原文:LearninPublic转载自译者:https://farland.vip/2022/04/29/learn-in-public/--如何快速学习如果有一个黄金法则,就是这一条。所有其他规则,无论大小,都首先基于这一规则。正如我们所知,学习是没有止境的。许多人只是在"单独学习",并不断为之付出努力。他们自己不生产任何东西,而是消费内容。你这样做也没什么,
- (语法笔记 分析题解语法 二分 “unordered_map与vector<pair<>>“ 快速数组)leetocde 1146
维齐洛波奇特利(male)
算法前端c++
*注:代码和题解思路来源于灵茶山艾府,因为我之前未接触过vector>与map的联合使用才写的笔记链接:灵茶山艾府题解核心思路:建立unordered_map>>history;令key为下标vector存放不同快照引索的值,详看下文的输出unordered_map>>history;键:int值:vector>history[0]会访问history中键为0所对应的std::vector>。如果
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =