基于sklearn实现多层感知机(MLP)算法(python)

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

基于sklearn实现多层感知机(MLP)算法(python)_第1张图片

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现MLP算法的代码如下(分类):

# =============神经网络用于分类=============
from sklearn.neural_network import MLPClassifier
import csv
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
    content=list(map(float,content))
    if len(content)!=0:
        data.append(content)
        traffic_feature.append(content[0:6])
        traffic_target.append(content[-1])
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature)  # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature)   # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
# 神经网络输入为2,第一隐藏层神经元个数为5,第二隐藏层神经元个数为2,输出结果为2分类。
# solver='lbfgs',  MLP的求解方法:L-BFGS 在小数据上表现较好,Adam 较为鲁棒,
# SGD在参数调整较优时会有最佳表现(分类效果与迭代次数),SGD标识随机梯度下降。
clf =  MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(30,20), random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

实现MLP算法的代码如下(回归):

# =============神经网络用于回归=============
from sklearn.neural_network import MLPRegressor
import csv
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
    content=list(map(float,content))
    if len(content)!=0:
        data.append(content)
        traffic_feature.append(content[0:6])
        traffic_target.append(content[-1])
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature)  # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature)   # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
# 神经网络输入为2,第一隐藏层神经元个数为5,第二隐藏层神经元个数为2,输出结果为2分类。
# solver='lbfgs',  MLP的求解方法:L-BFGS 在小数据上表现较好,Adam 较为鲁棒,
# SGD在参数调整较优时会有最佳表现(分类效果与迭代次数),SGD标识随机梯度下降。
clf = MLPRegressor(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(5,2), random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

 

你可能感兴趣的:(MLP,python,sklearn)