http://acm.hdu.edu.cn/showproblem.php?pid=1828
扫描线法,线段树节点同时记录区间端点是否被覆盖,区间中有几条水平线,
累加答案时,注意线段会有覆盖,因此应加上变化量;
根据记录的水平线数量统计上水平线长度。
#include
#include
#include
#include
using namespace std;
inline int read() {
int num = 0, flag = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') flag = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
num = num * 10 + c - '0', c = getchar();
return flag * num;
}
const int maxn = 5e3 + 5;
struct Line {
int x, y1, y2, k;
bool operator < (const Line& rhs) const {
return x < rhs.x;
}
} line[2 * maxn];
int n, a[2 * maxn];
struct SegmentTree {
int l, r, cnt, len, lf, rf, num;
} t[8 * maxn];
inline void up(int p) {
if (t[p].cnt) {
t[p].len = a[t[p].r + 1] - a[t[p].l];
t[p].lf = t[p].rf = 1, t[p].num = 2;
}
else if (t[p].l == t[p].r)
t[p].len = t[p].lf = t[p].rf = t[p].num = 0;
else {
t[p].len = t[2 * p].len + t[2 * p + 1].len;
t[p].lf = t[2 * p].lf, t[p].rf = t[2 * p + 1].rf;
t[p].num = t[2 * p].num + t[2 * p + 1].num;
if (t[2 * p].rf && t[2 * p + 1].lf) t[p].num -= 2;
}
}
void build(int p, int l, int r) {
t[p].l = l, t[p].r = r;
t[p].cnt = t[p].len = t[p].lf = t[p].rf = t[p].num = 0;
if (l == r) return;
int mid = (l + r) >> 1;
build(2 * p, l, mid);
build(2 * p + 1, mid + 1, r);
}
void modify(int p, int l, int r, int d) {
if (l <= t[p].l && t[p].r <= r) {
t[p].cnt += d, up(p);
return;
}
int mid = (t[p].l + t[p].r) >> 1;
if (l <= mid) modify(2 * p, l, r, d);
if (r > mid) modify(2 * p + 1, l, r, d);
up(p);
}
int main() {
while (scanf("%d", &n) == 1) {
for (int i = 1; i <= n; ++i) {
int x1 = read(), y1 = read(), x2 = read(), y2 = read();
line[i] = (Line){x1, y1, y2, 1};
line[i + n] = (Line){x2, y1, y2, -1};
a[i] = y1, a[i + n] = y2;
}
sort(line + 1, line + 2 * n + 1);
sort(a + 1, a + 2 * n + 1);
a[0] = unique(a + 1, a + 2 * n + 1) - a - 1;
build(1, 1, a[0] - 1);
int ans = 0, last = 0;
for (int i = 1; i <= 2 * n; ++i) {
int y1 = lower_bound(a + 1, a + a[0] + 1, line[i].y1) - a;
int y2 = lower_bound(a + 1, a + a[0] + 1, line[i].y2) - a;
modify(1, y1, y2 - 1, line[i].k);
ans += abs(t[1].len - last) + t[1].num * (line[i + 1].x - line[i].x);
last = t[1].len;
}
printf("%d\n", ans);
}
return 0;
}