- 99.13 金融难点通俗解释:营业利润率
金融OG
金融资产组合模型进化论金融python机器学习算法大数据
目录0.承前1.简述2.比喻:冰淇淋店的日常开销2.1第一步:基础成本2.2第二步:经营支出2.3第三步:计算营业利润率3.生活中的例子3.1好的营业利润率3.2一般的营业利润率3.3差的营业利润率4.小朋友要注意4.1开销大不一定不好4.2开销小不一定好5.总结6.实现代码0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型进化全图鉴1.简述描述营业利润
- 4. 马科维茨资产组合模型+Fama-French五因子优化方案(理论+Python实战)
金融OG
金融资产组合模型进化论pythonjava前端金融数据库机器学习大数据
目录0.承前1.Fama-French五因子优化的现代投资组合理论1.1WhatisFama-French五因子优化的现代投资组合理论1.2WhyisFama-French五因子优化的现代投资组合理论1.3HowtoFama-French五因子优化的现代投资组合理论2.数据要素&计算流程2.1参数集设置2.2数据获取&预处理2.3收益率计算2.4因子构建与预期收益率计算2.5协方差矩阵计算2.6投
- 2. 马科维茨资产组合模型+CAMP优化方案(理论+Python实战)
金融OG
金融资产组合模型进化论人工智能大数据金融python数据库机器学习
目录0.承前1.资本资产定价模型(CAPM)优化的现代投资组合理论1.1WhatisCAPM优化的现代投资组合理论1.2WhyisCAPM优化的现代投资组合理论1.3HowtoCAPM优化的现代投资组合理论2.数据要素&计算流程2.1参数集设置2.2数据获取&预处理2.3收益率计算2.4CAPM预期收益率计算2.5协方差矩阵计算2.6投资组合表现计算2.7夏普比率优化2.8持仓筛选3.汇总代码4.
- 【AI量金术师:简易代码领悟高深金融术语】02.马科维茨资产组合模型Python实战
金融OG
高深金融术语私厨人工智能金融python
目录1.马科维茨资产组合模型简介1.1模型的起源与发展1.2核心概念2.模型的基本假设2.1投资者行为假设2.2市场环境假设3.模型的应用与局限性3.1实际应用3.2局限性探讨4.Python代码案例:实现马科维茨资产组合模型4.1环境准备与数据获取4.2数据收集4.3计算收益率与协方差矩阵4.4随机生成投资组合4.5绘制有效前沿4.6优化求解最优投资组合5.结论与展望1.马科维茨资产组合模型简介
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 深入MapReduce——引入
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。但HDFS仅仅解决了海量数据存储和读写的问题。但要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点大数据计算核心痛点量级大在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,
- NIO 和 Netty 在 Spring Boot 中的集成与使用
阿乾之铭
java网络开发语言
Netty到底是个啥,有啥子作用1.Netty的本质:对NIO的封装NIO的原生问题:Java的NIO提供了非阻塞I/O和多路复用机制,但其使用较为复杂(如Selector、Channel、Buffer的配置和管理)。开发者需要自己处理线程模型、资源管理、协议解析等底层细节,代码冗长且容易出错。Netty的改进:Netty对NIO进行了高级封装,提供了更加易用的API和灵活的抽象层,例如:Chan
- Linux 权限体系详解:、777、755、644、600、chmod、chown、chgrp 和 umask;SUID、SGID 和 Sticky Bit;ACL (访问控制列表) 是什么?
小胡说技书
手册/开发图谱运维linux运维服务器
文章目录1.引言1.1为什么学习Linux权限?1.2本文目标2.Linux权限基础概念2.1权限模型2.2权限类型2.3权限表示法2.3.1字母表示法2.3.2数字表示法2.3.3字母与数字表示法对比2.3.4案例:字母与数字的权限切换3.常见权限分配方法对比表格3.1使用`chmod`分配权限3.2使用`chown`和`chgrp`修改拥有者和用户组3.3使用`umask`设置默认权限4.高级
- 探秘ARMv7-M架构:打造高效嵌入式系统指南
嵇影钰
探秘ARMv7-M架构:打造高效嵌入式系统指南【下载地址】ARMv7-M架构参考手册及应用指南分享本资源包包含:-**ARMv7-MArchitectureReferenceManual**:这是ARM官方发布的权威文档,全面深入地介绍了ARMv7-M架构的核心概念、指令集、内存模型和编程模型等,是开发高性能、低功耗嵌入式系统的理论基础。-**ARMv7-MApplicationLevelRefe
- ARMv7-M架构参考手册及应用指南
董鉴勃
ARMv7-M架构参考手册及应用指南【下载地址】ARMv7-M架构参考手册及应用指南分享本资源包包含:-**ARMv7-MArchitectureReferenceManual**:这是ARM官方发布的权威文档,全面深入地介绍了ARMv7-M架构的核心概念、指令集、内存模型和编程模型等,是开发高性能、低功耗嵌入式系统的理论基础。-**ARMv7-MApplicationLevelReference
- 从自然语言到提示词:编程范式的革命
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
从自然语言到提示词:编程范式的革命关键词:编程范式、自然语言处理、提示词编程、人工智能、算法原理摘要:随着人工智能技术的不断发展,编程范式正经历着从自然语言处理向基于提示词的人工智能编程模式的转变。本文旨在探讨这一转变的背景、动机、原理及其在软件开发实践和工程方法论中的影响。文章将逐步分析自然语言处理和提示词编程的核心概念,讲解算法原理和数学模型,并通过实际案例展示编程范式转变的应用效果。第一部分
- 大模型WebUI:Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(5)
龙焰智能
gradioeventsundoretrylikeedit
大模型WebUI:Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(5)前言本篇摘要11.Chatbot:融合大模型的多模态聊天机器人11.5Chatbot的特殊Events11.5.1各事件总演示11.5.2详解.undo、.retry、.like和.edit事件1..undo:撤销2..retry:重试3..like:点赞4..edit:编辑参考文献前言本系列文章主要介绍W
- 信息流广告预估技术在美团外卖的实践 思维导图-java架构
用心去追梦
java架构开发语言
创建一个关于“信息流广告预估技术在美团外卖的实践”的思维导图,并且专注于Java架构下的实现,可以按照以下结构来组织内容。这个思维导图将涵盖从数据收集、特征工程、模型选择与训练、系统架构设计到性能优化和效果评估的关键领域。思维导图结构1.项目背景美团外卖平台简介用户群体与市场定位信息流广告的意义提升用户体验增加广告收益2.用户及上下文数据收集数据来源用户行为(点击、浏览、下单等)广告主提供的创意素
- fps游戏服务器架构设计
你一身傲骨怎能输
游戏服务器运维
FPS(First-PersonShooter,第一人称射击游戏)服务器的架构设计需要考虑到游戏性能、实时性、可扩展性和安全性等多方面的需求。以下是一个基本的FPS游戏服务器架构设计:客户端-服务器模型:采用客户端-服务器模型,游戏客户端负责呈现游戏画面、获取用户输入、播放音效等,游戏服务器负责处理游戏逻辑、同步玩家状态、检测作弊等。客户端和服务器通过网络进行实时通信。高性能网络通信:FPS游戏对
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- gradio库的基本使用
Echo.....
pythonpython
Gradio(通过pipinstallgradio安装)是一个用于创建交互式界面的Python库。它允许你基于预训练模型、函数或任意代码块创建实时演示和部署模型的图形用户界面(GUI)。使用Gradio库,你可以轻松创建Web界面,用于输入数据、调用模型、显示结果,并为用户提供与模型交互的功能。它支持多种输入类型(如文本框、图片上传、滑块等)和输出展示方式(如图像展示、文本展示等)。你可以根据需要
- 大型语言模型高效预训练策略的比较研究
二进制独立开发
非纯粹GenAI深度思索GenAI与Python语言模型深度学习人工智能自然语言处理python开发语言机器学习
文章目录摘要1.引言2.背景与挑战2.1LLM中的预训练2.2扩展LLM的挑战3.高效预训练策略3.1增量训练3.1.1理论基础3.1.2实际实现3.1.3实验结果3.2混合优化3.2.1理论基础3.2.2实际实现3.2.3实验结果3.3其他新兴技术3.3.1知识蒸馏3.3.2稀疏训练3.3.3数据增强3.3.4迁移学习4.比较分析4.1性能指标4.2增量训练vs.混合优化4.2.1模型精度4.2
- 题目:解码方法(来自leetcode)动态规划----斐波那契模型
清风逸梦
leetcode动态规划算法
解码方法题目动态规划(5步走)状态表示状态转移方程初始化填表顺序返回值代码题目链接题目动态规划(5步走)状态表示dp[i]表示为从下标i之前的的解码数。状态转移方程以i位置为终点,下标为i的位置有两种方式:第一种就是单独解码,第二种就是与前面的一位数合并解码。单独解码有分两种情况:第一种是:当s[i]在[1,9]时可以单独解码,就相当于在dp[i-1]种情况后接上一个单独解码,所以dp[i]=dp
- 【大模型】ChatGPT 提示词优化进阶操作实战详解
小码农叔叔
AI大模型实战与应用ChatGPT提示词优化进阶ChatGPT提示词优化ChatGPT提示词优化技巧ChatGPT提示词优化原则ChatGPT提示词常用技巧
目录一、前言二、ChatGPT提示词几个基本的优化原则2.1明确的提示词2.1.1提示词具体而清晰2.1.1.1操作案例演示2.2确定焦点2.2.1操作案例演示2.3保持提示词的相关性2.3.1什么是相关性2.3.2提示词相关性操作案例一2.3.2提示词相关性操作案例二三、ChatGPT提示词进阶及常用优化策略3.1提示词常用优化策略总结3.2ChatGPT提示词优化操作实战3.2.1身份设定3.
- chat4.0国内版下载
西里.中国 | CiiLii.Com
gptchatgpt
由于我无法直接提供应用程序的下载链接,特别是当涉及到具体的版本号和地区限制时,我建议您通过官方渠道或可信赖的应用商店来下载chat4.0国内版。chat4.0国内版下载-chatgpt模型以下是一些可能的步骤:访问手机应用商店(如AppStore、GooglePlayStore等),在搜索框中输入“chat4.0国内版”或相关关键词。在搜索结果中找到官方或可信赖的开发者发布的chat4.0国内版应
- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- OpenCompass评测大模型
辣条少年
人工智能
OpenCompass简介上海人工智能实验室科学家团队于2024.01.30正式发布了大模型开源开放评测体系“司南”(OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。OpenCompass平台广泛支持超过100种HuggingFace和API模型,融合了100多个数据集,包含约40万个问题,用以从八个维度评估模型。其高效的分布式评估系统能够快速且全面地评估十亿级规
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 2024全球十大工程成就:文生视频大模型Sora引领AI时代
前端
2024年,中国工程院院刊《Engineering》公布了备受瞩目的“2024全球十大工程成就”,这不仅是对过去一年工程科技领域杰出贡献的肯定,更标志着全球科技发展进入一个新的阶段。这十大成就涵盖了航天探索、生物医学、人工智能、新能源等多个领域,体现了当今科技前沿的最高水平。其中,文生视频大模型Sora的入选尤为引人注目,它代表着AI代码生成技术在内容创作领域的突破性进展,预示着未来内容生产方式的
- 【论文速读】| 评估并提高大语言模型生成的安全攻击探测器的鲁棒性
llm
基本信息原文标题:EvaluatingandImprovingtheRobustnessofSecurityAttackDetectorsGeneratedbyLLMs原文作者:SamuelePasini,JinhanKim,TommasoAiello,RocíoCabreraLozoya,AntoninoSabetta,PaoloTonella作者单位:UniversitàdellaSvizze
- Redis 7.0 新特性助力:小红书利用 I/O 多线程模型应对高并发挑战
真想骂*
redis数据库缓存
在当今的互联网环境中,高并发问题一直是众多平台开发者和技术运维人员面临的重大挑战。特别是在像小红书这样的社交电商平台上,用户访问量巨大,数据交互频繁,如何在高并发场景下保持系统的稳定性和高效性,成为了一项至关重要的任务。Redis作为一款轻量级、高性能的键值对存储系统,凭借其独特的特性和不断优化的新版本,成为了小红书应对高并发挑战的得力助手。本文将深入探讨Redis7.0的新特性——I/O多线程模
- 在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(下)
佛州小李哥
人工智能aws亚马逊云科技云计算语言模型ai科技
提示工程(PromptEngineering)对各位小伙伴们来说是再熟悉不过了,提示词工程技术是通过编写指令词,指导开发者们调用AI基础模型(FMs)获得期望的响应。但是经常写提示词的朋友们会知道,为了获取理想的输出,我们可能需要花费数月时间不断进行实验和调整才能得到最优的提示词,同时不同基础模型的提示词最佳实践也不尽相同,这意味着我们要设计兼容不同模型类别的提示词。此外提示词通常是与特定模型和特
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul