- 园林无线灌溉控制系统组成与功能
北京聚英翱翔电子有限公司
物联网监控系统工业物联网物联网人工智能大数据
随着信息技术的飞速发展和全球水资源日益紧张,无线灌溉控制系统作为一种高效、智能的灌溉方式,在园林行业中得到了广泛的应用。该系统基于物联网技术传感器技术、无线通信技术等,通过远程监控和自动控制,实现了对园林灌溉的精准管理和优化。园林无线灌溉控制解决方案,集成改造原有灌溉系统中的阀门、控制器等部件,配合监测园林环境信息的采集器,利用LORA无线网络进行通讯,经智慧农业云平台调控执行灌溉作业,实现远程手
- 【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练
Donvink
大模型#AIGCstablediffusionAIGC人工智能机器学习深度学习
目录1引言2项目简介3快速上手3.1下载代码3.2环境配置3.3项目结构3.4下载模型与数据集3.5运行指令3.6核心参数说明3.6.1通用参数3.6.2优化器/学习率3.6.3数据相关4结语1引言在人工智能和机器学习领域,生成模型的应用越来越广泛。StableDiffusion作为其中的佼佼者,因其强大的图像生成能力而备受关注。今天,我的开源项目DiveIntoStableDiffusionv3
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- LORA的魔法棒:在Stable Diffusion中挥洒注意力机制的优化咒语 ??
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
LORA的魔法棒:在StableDiffusion中挥洒注意力机制的优化咒语??欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:DTcode7的博客首页。一个做过前端开发的产品经理,经历过睿智产品的折磨导致脱发之后,励志要翻身农奴把歌唱,一边打入敌人内部一边持续提升自己,为我们广大开发同胞
- 计算机网络-扩展
夏旭泽
计算机网络
物联网实现物物相连的互联网络,其包涵两个方面:物联网的核心和基础仍然是互联网,是在互联网基础上延申和扩展的网络其用户端延申和扩展到了任何物体与物体之间,使其进行信息交换和通信感知层:识别物体、采集信息。eg:二维码、RFID、摄像头、传感器网络层:传递信息和处理信息。通信网与互联网的融合网络、网络管理中心、信息中心和只能处理中心等应用层:解决信息处理和人机交互问题关键技术:射频识别技术(Radio
- 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
寻道AI小兵
AI大模型前沿技术追踪人工智能语言模型AIGC
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破目录系列篇章前言一、项目概述二、技术原理(一)异构低秩适应(H-LoRA)(二)分层视觉感知(HVP)(三)三阶段学习策略(TLS)三、
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- 汽车PKE无钥匙进入系统一键启动系统定义与原理
zsmydz888
汽车无钥匙进入系统汽车无钥匙启动汽车
汽车智能钥匙(PKE无钥匙进入系统)一键启动介绍系统定义与原理汽车无钥匙进入系统,简称PKE(PassiveKeylessEntry),该系统采用了RFID无线射频技术和车辆身份编码识别系统,率先应用小型化、小功率射频天线的开发方案,并成功融合了遥控系统和无钥匙系统。它使用无线电波,使车主无需按下任何按钮即可解锁或锁定车辆。一键启动智能钥匙系统主要由无匙进入和一键启动两部分构成,无匙进入技术通过在
- 无线数据网关 自动化测控的LoRa-4G混合网络 串口升级、信号扩展 高效物联传输网络
河北稳控科技
自动化网络运维
DLS11无线数据网关自动化测控的LoRa-4G混合网络串口升级、信号扩展高效物联传输网络DLS11是一款专为VSxxx系列采发仪设计的内置电池低功耗数据转发器,支持LoRA和LTE(4G)无线通信。该设备通过“实时在线”的LoRA收发器,能够收集并存储来自其他LoRA设备的数据。随后,DLS11会定时启动,将这些存储的数据重新打包为标准数据包,并通过LTE网络发送至远端服务器。数据发送方式灵活多
- 采用 LoRa 解决方案的智慧供应链和物流
地理探险家
物联网LoRa物流方案
冠状病毒病(COVID-19)大流行,不可避免地导致全球供应链和物流行业,出现重大缺口和中断,但LoRa解决方案等新兴技术,可以帮助解决行业在这些充满挑战的时期的困境。物联网LoRa解决方案LoRa(长距离的缩写)是一种无线技术,已开发用于透过用于物联网(IoT)应用的传感器和低功耗广域网(LPWAN),进行远距离低数据速率通信调制技术。LoRa相对于其他无线技术的优势局域网低功耗广域网蜂窝短距离
- 基于STM32单片机的人脸识别电子密码锁RFID刷卡门禁锁设计+红外避障检测人流量液晶显示设计DIY25-147
通旺科技
单片机stm32嵌入式硬件
STM32单片机+红外人流量统计+人脸识别(管理)+RFID刷卡+密码可设+TFT屏+舵机+蜂鸣器+矩阵按键本系统由STM32F103C8T6单片机核心板、1.44寸TFT彩屏、红外避障传感器、人脸识别模块、RFID射频卡读写模块、舵机驱动电路、蜂鸣器报警电路、矩阵按键电路及电源组成。【1】设备识别到已录入的人脸信息、已录入的RFID卡号信息、输入密码正确,则进行舵机控制,打开门禁;同时液晶能够显
- 追踪问题链中问题的上溯和下延
由数入道
AI辅助教学思维模型认知框架
一、理解问题链的本质首先,我们需要认识到问题链的本质并非简单的线性关系,而更像是一个复杂的网络或树状结构。向上溯源(RootCauseAnalysis):追溯问题“向上发芽”意味着我们要找到当前问题的根源,即是什么更深层次的问题、假设、前提或信息缺失导致了当前问题的产生。这就像追溯树木的根系,找到滋养它的土壤和水源。向下延展(ConsequenceAnalysis&Exploration):问题“
- 应用广泛的2.4G无线私有协议射频PA芯片盘点
番茄老夫子
物联网智能硬件单片机
以下是一些常见的2.4G无线私有协议射频PA芯片推荐:NRF528401:特点:这是一款超低功耗的2.4GHz无线射频SoC芯片。集成了多协议2.4GHz收发器、Arm®Cortex®-M4FCPU和闪存程序FLASH。支持蓝牙BLE、802.15.4和2.4GHz私有协议等多种协议。在1MbpsBLE模式下灵敏度为-95dBm,在125kbpsBLE模式下灵敏度为-103dBm(远距离)。发射功
- 从零学习大模型(六)-----LoRA(上)
懒惰才能让科技进步
大语言模型gpt-3人工智能深度学习chatgpt语言模型
LoRA简介LoRA(Low-RankAdaptation)是一种参数高效的微调技术,旨在降低微调大规模预训练模型的存储和计算成本。**其核心思想是通过对模型的特定参数进行低秩分解,仅对少量附加参数进行训练,从而完成任务适应,而无需更新整个模型的权重。**这种方法通过引入额外的低秩矩阵来适应新的任务,保持了预训练模型的核心知识,使其更具灵活性和高效性。在大规模语言模型的实际应用中,微调需要耗费巨大
- 在LORA训练中,LORA模型的矩阵的行列是多少
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力矩阵人工智能深度学习学习机器学习算法
在LORA训练中,LORA模型的矩阵的行列是多少:Wnew=W+αrBAW_{new}=W+\frac{\alpha}{r}BA
- python colorama_Python colorama 模块 使用 说明
weixin_39682697
pythoncolorama
1Colorama模块说明在上篇博客我们了解了prettytable的使用,如下:https://www.cndba.cn/cndba/dave/article/3564使用prettytable模块之后,输出的内容格式看上去会非常整齐,但如果我们想要对部分内容重点显示,那么可以使用两种方法:1)直接使用Python控制输出颜色2)使用colorama模块Colorama是一个python专门用来
- python colorama模块失效怎么办_python – 由于模块colorama,无法使用aws CLI
金牛远望号
pythoncolorama模块失效怎么办
我已经安装了AWSCLI,并尝试在MacOSSierra上使用它.它抱怨没有模块colorama:$awsTraceback(mostrecentcalllast):File"/usr/local/bin/aws",line19,inimportawscli.clidriverFile"/Library/Python/2.7/site-packages/awscli/clidriver.py",l
- Python Colorama 库详解:终端输出美化的神器
萧鼎
python基础到进阶教程python
PythonColorama库详解:终端输出美化的神器在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等。而Colorama是一个简单易用的Python库,可以帮助我们轻松地为终端输出添加颜色,提升用户体验。1.Colorama是什么?Colorama是一个Python库,用于在终端中实现跨平台的彩色文本输出。它主要提供以下功能:为文本添加前景色、背景色。控
- Python之colorama
PlutoZuo
Pythonpython开发语言
Python之colorama文章目录Python之colorama1.安装Colorama库2.导入Colorama库3.初始化Colorama4.设置文本颜色和样式5.自定义颜色和样式Colorama是一个Python库,用于在控制台(终端)上输出彩色文本。它提供了一些方便的函数和类,用于在命令行界面中添加颜色和样式。以下是一些使用Colorama库的详细示例:1.安装Colorama库首先,
- LORA 微调大模型:从入门到入土
大模型.
人工智能开发语言gptagi架构大模型
在当今人工智能领域,预训练的大模型已经成为推动技术发展的核心力量。然而,在实际项目中,我们往往会发现这些预训练模型虽然强大,但直接就去应用于一些特定的任务时,往往无法完全满足需求。这时,微调就成为了必不可少的一步。而在众多微调方法中,LORA全名(Low-RankAdaptation)以高效性和实用性,逐渐成为了许多开发者训练模型的首选项。作为一名小有经验的咸鱼开发者,我深知在实际项目中高效的进行
- rStar论文精读
MoyiTech
推理模型OpenAI-O1原理
论文简介论文标题:《MutualreasoningmakessmallerLLMsstrongerproblem-solvers》论文地址:https://arxiv.org/abs/2408.06195录用会议:ICLR2025背景与挑战挑战1:在SLM中平衡exploration与exploitation。一些方法有很大的exploitation但限制任务多样性泛化性不好;一些方法有很大的ex
- FIT5147 Data Exploration and Visualisation
后端
MonashUniversityFIT5147DataExplorationandVisualisationSemester1,2025DataExplorationProjectPart1:DataExplorationProjectProposalPart2:DataExplorationProjectReportYouareaskedtoexploreandanalysedataabouta
- AI技术学习笔记系列001:FastLanguageModel.get_peft_model 函数各参数的详细解释
新说一二
人工智能学习笔记
以下是关于代码中FastLanguageModel.get_peft_model函数各参数的详细解释,以及企业实际微调时的选择考量:参数详解及对微调的影响1.r=32(秩)作用:控制LoRA适配器的低秩矩阵的维度(秩),直接影响可训练参数数量。影响:r越大:适配器表达能力更强,能捕捉更复杂的任务特征,但可能导致过拟合(尤其数据量少时),训练时间和显存占用增加。r越小:参数量少,训练更快,显存占用低
- 一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
数据分析能量站
机器学习人工智能
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释:模型概述微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间的无缝交互,为用户提供更自然、更智能的交互体验。模型架构该模型采用多模态Transformer架构,通过LoRA(
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 大模型LLM基于PEFT的LoRA微调详细步骤---第一篇:模型下载篇
素雪风华
大模型下载Huggingface魔搭社区transformer
模型下载:HuggingFace官网:https://huggingface.co/----需要VPN魔搭社区:https://modelscope.cn/home----国内映射,不需要VPN写在篇始:国内关注方法一即可。其余几种都需要VPN,而且在服务器下载的速度有限~~。下一篇:微调详细流程以及环境...方法一:魔搭(modelscope)下载#需要安装pipinstallmodelscop
- LoRa无线技术解析
wmq163
物联网lora
一、Lora技术基础与特点1、LoRa是一种低功耗广域网通信(LPWAN)技术中的一种,是Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输技术。比sigfox的FSK技术更加灵敏,传送距离更远,更节能。2、LoRa是物理层(PHY)协议,能被应用在几乎所有的网络技术中。3、LoRa模块主要在全球免费频段运行,频率范围从137MHz-1050MHz,常见的主要是433MHz、868M
- 是德科技N9020A使用领域介绍
圣格特刘工
嵌入式硬件网络可用性测试集成测试人工智能
是德科技(Keysight)N9020A频谱分析仪是一款高性能信号分析仪,适用于多个领域,主要包括以下应用场景:1.无线通信测试5G/4G/LTE/Wi-Fi测试:用于评估通信系统的射频性能,分析信号质量、调制精度等。射频器件测试:测量功率、带宽、谐波失真等指标,确保射频元器件符合标准。2.雷达与国防雷达信号分析:测试雷达信号的频谱特性、瞬时带宽、脉冲宽度等参数。电子战(EW)测试:分析复杂电磁环
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite