第四周作业:卷积神经网络学习part3

代码学习

HybridSN高光谱分类网络

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
import spectral
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class_num = 16

class HybridSN(nn.Module):
  def __init__(self):
    super(HybridSN,self).__init__()
    self.conv1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
    self.bn1 = nn.BatchNorm3d(8)
    self.conv2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
    self.bn2 = nn.BatchNorm3d(16)
    self.conv3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
    self.bn3 = nn.BatchNorm3d(32)
    self.conv4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
    self.bn4 = nn.BatchNorm2d(64)

    self.fc1 = nn.Linear(18496,256)
    self.fc2 = nn.Linear(256,128)
    self.fc3 = nn.Linear(128,16)
    self.drop = nn.Dropout(0.4)

  def forward(self,x):
    #三维卷积部分:
    out = F.relu(self.bn1(self.conv1(x)))
    out = F.relu(self.bn2(self.conv2(out)))
    out = F.relu(self.bn3(self.conv3(out)))
    #把前面的 32*18 reshape 一下,得到 (576, 19, 19)
    out = out.reshape(out.shape[0],-1,19,19)
    #二维卷积
    out = F.relu(self.bn4(self.conv4(out)))
    # flatten 操作,变为 18496 维的向量
    out = out.reshape(out.shape[0],-1)
    #全连接层
    out = F.relu(self.drop(self.fc1(out)))
    out = F.relu(self.drop(self.fc2(out)))
    out = self.fc3(out)
    return out
    
# 对高光谱数据 X 应用 PCA 变换
def applyPCA(X, numComponents):
    newX = np.reshape(X, (-1, X.shape[2]))
    pca = PCA(n_components=numComponents, whiten=True)
    newX = pca.fit_transform(newX)
    newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
    return newX

# 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
def padWithZeros(X, margin=2):
    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
    x_offset = margin
    y_offset = margin
    newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
    return newX

# 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
    # 给 X 做 padding
    margin = int((windowSize - 1) / 2)
    zeroPaddedX = padWithZeros(X, margin=margin)
    # split patches
    patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
    patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
    patchIndex = 0
    for r in range(margin, zeroPaddedX.shape[0] - margin):
        for c in range(margin, zeroPaddedX.shape[1] - margin):
            patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]   
            patchesData[patchIndex, :, :, :] = patch
            patchesLabels[patchIndex] = y[r-margin, c-margin]
            patchIndex = patchIndex + 1
    if removeZeroLabels:
        patchesData = patchesData[patchesLabels>0,:,:,:]
        patchesLabels = patchesLabels[patchesLabels>0]
        patchesLabels -= 1
    return patchesData, patchesLabels

def splitTrainTestSet(X, y, testRatio, randomState=345):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
    return X_train, X_test, y_train, y_test
   
# 地物类别
class_num = 16
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']

# 用于测试样本的比例
test_ratio = 0.90
# 每个像素周围提取 patch 的尺寸
patch_size = 25
# 使用 PCA 降维,得到主成分的数量
pca_components = 30

print('Hyperspectral data shape: ', X.shape)
print('Label shape: ', y.shape)

print('\n... ... PCA tranformation ... ...')
X_pca = applyPCA(X, numComponents=pca_components)
print('Data shape after PCA: ', X_pca.shape)

print('\n... ... create data cubes ... ...')
X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
print('Data cube X shape: ', X_pca.shape)
print('Data cube y shape: ', y.shape)

print('\n... ... create train & test data ... ...')
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
print('Xtrain shape: ', Xtrain.shape)
print('Xtest  shape: ', Xtest.shape)

# 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
Xtest  = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
print('before transpose: Xtrain shape: ', Xtrain.shape) 
print('before transpose: Xtest  shape: ', Xtest.shape) 

# 为了适应 pytorch 结构,数据要做 transpose
Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
Xtest  = Xtest.transpose(0, 4, 3, 1, 2)
print('after transpose: Xtrain shape: ', Xtrain.shape) 
print('after transpose: Xtest  shape: ', Xtest.shape) 


""" Training dataset"""
class TrainDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtrain.shape[0]
        self.x_data = torch.FloatTensor(Xtrain)
        self.y_data = torch.LongTensor(ytrain)        
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

""" Testing dataset"""
class TestDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtest.shape[0]
        self.x_data = torch.FloatTensor(Xtest)
        self.y_data = torch.LongTensor(ytest)
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

# 创建 trainloader 和 testloader
trainset = TrainDS()
testset  = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False, num_workers=2)

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 网络放到GPU上
net = HybridSN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
net.train()
# 开始训练
total_loss = 0
for epoch in range(100):
    for i, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print('[Epoch: %d]   [loss avg: %.4f]   [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))

print('Finished Training')

net.eval()
count = 0
# 模型测试
for inputs, _ in test_loader:
    inputs = inputs.to(device)
    outputs = net(inputs)
    outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
    if count == 0:
        y_pred_test =  outputs
        count = 1
    else:
        y_pred_test = np.concatenate( (y_pred_test, outputs) )

# 生成分类报告
classification = classification_report(ytest, y_pred_test, digits=4)
print(classification)

多次测试后结果:0.9719 0.9730 0.9732

测试结果不稳定,上网查询,在训练模型时会在前面加上:

model.train()

在测试模型时在前面使用:

model.eval()

这两个方法是针对在网络训练和测试时采用不同方式的情况,比如Batch NormalizationDropout

  • 训练时是针对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。由于网络训练完毕后参数都是固定的,因此每个批次的均值和方差都是不变的,因此直接结算所有batch的均值和方差。所有Batch Normalization的训练和测试时的操作不同
  • 在训练中,每个隐层的神经元先乘概率P,然后在进行激活,在测试中,所有的神经元先进行激活,然后每个隐层神经元的输出乘P。

添加后结果稳定为:0.9792

SENet实现

将SE模块添加到上述HybridSN网络后面两个2D卷积中,添加的SE模块及修改后的HybridSN网络:

class_num = 16

class SEBlock(nn.Module):
  def __init__(self,channel,r=16):
    super(SEBlock,self).__init__()
    self.avg_pool = nn.AdaptiveAvgPool2d(1)
    self.fc1 = nn.Linear(channel,round(channel/r))
    self.fc2 = nn.Linear(round(channel/r),channel)

  def forward(self,x):
    out = self.avg_pool(x)
    out = out.view(out.shape[0],-1)
    out = F.relu(self.fc1(out))
    out = F.sigmoid(self.fc2(out))
    out = out.view(x.shape[0],x.shape[1],1,1)
    out = x * out
    return out

class HybridSN(nn.Module):
  def __init__(self):
    super(HybridSN,self).__init__()
    self.conv1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
    self.bn1 = nn.BatchNorm3d(8)
    self.conv2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
    self.bn2 = nn.BatchNorm3d(16)
    self.conv3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
    self.bn3 = nn.BatchNorm3d(32)
    self.conv4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)

    self.SElayer = SEBlock(64,16)

    self.bn4 = nn.BatchNorm2d(64)
    self.fc1 = nn.Linear(18496,256)
    self.fc2 = nn.Linear(256,128)
    self.fc3 = nn.Linear(128,16)
    self.dropout = nn.Dropout(0.4)

  def forward(self,x):
    out = F.relu(self.bn1(self.conv1(x)))
    out = F.relu(self.bn2(self.conv2(out)))
    out = F.relu(self.bn3(self.conv3(out)))

    out = out.reshape(out.shape[0],-1,19,19)
    out = F.relu(self.bn4(self.conv4(out)))

    out = self.SElayer(out)

    out = out.reshape(out.shape[0],-1)
    out = F.relu(self.dropout(self.fc1(out)))
    out = F.relu(self.dropout(self.fc2(out)))
    out = self.fc3(out)
    return out

测试结果:0.9870

SENet的提升分类性能的本质原理:Excitation使用全连接神经网络,对Sequeeze后的结果做非线性变换,,之后使用Excitation得到的结果作为权重,乘到输入特征上,提升有效特征,抑制无效特征。

视频学习

1、《语义分割中的自注意力机制和低秩重建》-李夏 链接

2、《 图像语义分割前沿进展》-程明明 链接

你可能感兴趣的:(第四周作业:卷积神经网络学习part3)