Spark-stream基础---sparkStreaming和Kafka整合wordCount单词计数

项目

sprak-stream与kafak整合wordCount
在IDEA上接收kafka传来的数据,并进行单词统计

linux端打开kafka

//1.先打开zookeeper(3台)
zkServer.sh start 
//2.在打开kafka(3台)
 bin/kafka-server-start.sh config/server.properties &
//3.创建生产者
bin/kafka-console-producer.sh --broker-list hou-01:9092 --topic wc
//4.控制台输入任意单词

IDEA添加依赖

    
        org.apache.spark
        spark-streaming-kafka-0-8_2.11
        ${spark.version}
    

1.0版本单词计数


package day08
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

/*
需求:kafka消费数据到sparkStreaming计算
 */
object KafkaWordCount {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val conf: SparkConf = new SparkConf().setAppName("kafkaWordCount").setMaster("local[2]")
    val ssc: StreamingContext = new StreamingContext(conf,Milliseconds(2000))


    //2.接入kafka数据源(如何访问kafka集群?zookeeper)
    val zkQuorm: String = "192.168.64.111,192.168.64.112,192.168.64.113"
    //访问组
    val groupID = "g1"
    //访问主题
    val topic: Map[String, Int] = Map[String,Int]("wc"->1)
    //创建Dstream
    val kafkaStream: ReceiverInputDStream[(String, String)] = KafkaUtils
      .createStream(ssc,zkQuorm,groupID,topic)

    //3.处理数据
    val data: DStream[String] = kafkaStream.map(_._2)

    //4.启动streaming程序
    val r: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
    r.print()
    ssc.start()

    //5.关闭资源
    ssc.awaitTermination()

  }
}

结果

Spark-stream基础---sparkStreaming和Kafka整合wordCount单词计数_第1张图片

2.0版本单词计数

将历史记录保存下来,显示出来,主要使用dataFunc
package day08

import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Milliseconds, StreamingContext}

object StatusKafkaWordCount {
  //保持历史状态 wc 单词,次数 聚合的key
  //第一个类型:单词,第二个类型:在每一个分区中出现的次数累加的结果
  //第三个类型:是以前的结果
  val updateFunc = (iter:Iterator[(String,Seq[Int],Option[Int])]) => {
    //总的次数= 当前出现的次数 + 以前返回的结果
    iter.map(t => (t._1, t._2.sum + t._3.getOrElse(0)))
  }

  def main(args: Array[String]): Unit = {

    //1.创建程序入口
    val conf: SparkConf = new SparkConf().setAppName("StateKafkaWC").setMaster("local[2]")
    val ssc: StreamingContext = new StreamingContext(conf,Milliseconds(2000))

    //2.需要累加历史数据 checkpoints
    ssc.checkpoint("hdfs://192.168.64.111:9000/ck")

    //3.接入kafka数据源
    val zkQuorm: String = "192.168.64.111,192.168.64.112,192.168.64.113"
    //访问组
    val groupID = "g1"
    //访问主题
    val topic: Map[String, Int] = Map[String,Int]("wc"->1)
    //创建Dstream
    val kafkaStream: ReceiverInputDStream[(String, String)] = KafkaUtils
      .createStream(ssc,zkQuorm,groupID,topic)

    //4.处理数据
    val data: DStream[String] = kafkaStream.map(_._2)

    //5.加入历史数据计算

    val r: DStream[(String, Int)] = data.flatMap(_.split(" ")).map((_, 1))
      //参数1:自定义业务函数 参数2:分区器设置 参数3:是否使用
      .updateStateByKey(updateFunc, new HashPartitioner(ssc.sparkContext.defaultParallelism), true)

    //6.打印
    r.print()
    //7.启动程序
    ssc.start()
    //8.关闭资源
    ssc.awaitTermination()

  }
}

结果

Spark-stream基础---sparkStreaming和Kafka整合wordCount单词计数_第2张图片

你可能感兴趣的:(Spark,数据开发)