上海久耶HBase实时数仓探索实践

文章从六个方面介绍,首先是久耶第一代离线数仓以及第二代实时数仓。接下来介绍下公司业务场景和业务开发,基于 HBase 的开发流程,然后介绍下公司 CDH 集群,介绍下 CDH 集群调优监控。最后分享两个生产案例。

上海久耶HBase实时数仓探索实践_第1张图片

第一代离线数仓是在去年三月份上线,主要是基于 OMS 和 WMS,由于分库分表,大约有十几个库。前期通过 SQOOP 进行数据抽取,后来由于 SQOOP 的一些问题采用了阿里开源的 DataX,时间粒度使用脚本调度实现 T+1 模式抽取到 Hive。作分析时采用 Apache 的 Kylin,将数据直接存入 HBase 中,最初数仓建立用于数表查询,用的是 Superset,后面也用了 Saiku。六个月就被淘汰,因为离线数仓有个问题,业务部分要查询数据,但是你的时间粒度是昨天的,业务部分需要看当天一段时间内的数据,离线是无法满足。

上海久耶HBase实时数仓探索实践_第2张图片

接下来在另一个集群构建实时数仓,其选型主要有两个,第一个是实时,实时采集利用 Maxwell,直接采集公司数据库 MySQL,将数据直接以 json 格式发送到 kafka,数仓存储选型是 HBase。

为什么选择 Maxwell 呢,第一个它能够使用“select * from Table”进行 bootstrapping 初始化数据,在大数据构建时可以利用 Maxwell 进行全表扫描,这句 SQL 会自动触发 Maxwell 某个线程进行数据拉取。第二个 Maxwell 支持断点还原功能,大数据平台架构不光考虑到高可靠、高性能,也要保证数据零丢失,它支持记录 MySQL 的 post 日志进行数据还原,这是当初选择最重要的原因。第三个 Maxwell 将数据从 MySQL 发送到 Kafka,Kafka 是分区的,如何保证全局有序是个问题。它能保证这个特性,支持 database, table, primary key, or column 的拼接,将数据发送到某个分区;比如一条业务数据在业务系统先在 insert 再做 update 再做 delete,Kafka 会将这三者发送到三个分区,key 值为空不会记录,在销毁时用 sparkstreaming 可能会以 delete、update、insert 顺序,会造成数据紊乱。我们希望将这些特征数据发送到 Kafka 一个分区,而 Kafka 单分区是有序的。第四个 Maxwell 也会将这些数据发送到后端,当业务数据的表需要升级,如加索引、加字段,可以通过 alert 语句解析捕获,进行同步更新到 HBase 中。因此基于这四点要求选择了 Maxwell,没有选择当前其他开源产品。

上海久耶HBase实时数仓探索实践_第3张图片

接下来讲一下为什么选择 HBase 而不选择 pudu 等产品。第一个是 HBase 是分布式、可缩的。第二个是随机的读和写,第三个 HBase 支持百万列。第三个介绍下为什么要选择 Phoenix,首先原因是支持 SQL,利用原生 HBase 进行查询、代码分析比较吃力。第二个我们构建的表是盐表,能够解决热点问题,避免一个节点很繁忙另一个节点很闲。第三 Phoenix 支持二级索引,由于表是盐表(分区),索引也是分区的。第四个支持 Spark,可以直接将表传入 Phoenix 而不用通过 HBase,有利于传统开发人员转型,而不用专注于底层 HBase。

上海久耶HBase实时数仓探索实践_第4张图片

基于 CDH HBase 版本构建 Phoenix 版本历程,phoenix-for-cloudera-4.9、HBase-1.2、cdh5.9,这个存在问题,然后采用 apache-phoenix-4.11.0、HBase-1.2,最后采用 phoenix-for-cloudera-4.10、HBase-1.2、cdh5.12。cdh5.11 的邮件配置存在 bug。

进行编译的原因是去年 Phoenix 官方是不支持 CDH 版本,目前是支持的。编译时将 pom 文件,改为 CDH 支持,然后改生产需要的 Spark 版本。修复 SYSTEM.MUTEX 表在分布式的计算时,多次创建错误。QueryServicesOptions.java 文件修改参数 DEFAULT_IS_NAMESPACE_MAPPING_ENABLED=true。Phoenix 存在一个问题就是时区,比如一条上午十点的业务数据在 Phoenix 周转下,时间数据会减一个 8 小时。修改 DateUtil.java 文件 timezone 为”Asia/Shanghai”,但是读写两种只解决了一种,而业务代码开发需要经过 Phoenix 架构 JDBC,数据还是会出错,上面只解决了查询,后来采用下面改动,然后编译。

上海久耶HBase实时数仓探索实践_第5张图片

上图是实时数仓架构图,主要的存储层还是以 HBase 为主。第一层业务系统数据库在阿里云平台上,有 OMS、WMS,Report DB 是 OMS 和 WMS 的重复,将里面的数据全部同步于一台机器,使用的就是 Maxwell,其支持白名单和黑名单。业务平台的表可能有两三百个,大数据平台的计算可能只需要 100 多个,可以添加白名单,有些表的数据就可以不用过来了。这些数据通过 Json 发送到 Kafka,然后通过 Spark streaming 去消费 Kafka,通过 JDBC 写入 HBase。表不是通过 Phoenix 语句创建,不关心底层 HBase,只需要通过 Phoenix 像 MYSQL 一样查询即可。同时会将计算结果存储到 Redis,久耶慧策应用也会将数据写入 ES 里面。中间一层就是常见应用开发,如 Spark Streaming、Spark SQl,也用 Python 和 R 语言。调度平台起先用的是 Azkaban,然后是 Airflow,最后用的是 Oozie。上图蓝色是实时大屏,红色是全球仓库,大约有四十几个,数据绑定用的是 saiKU,将 Phoenix 架包集成进去,saiKU 分上卷和下卷,业务人员依据自己的需求去拿行和列数据,saiKU 通过 Phoenix 组装 SQL 语句查询结果数据。也用到 zeppelin,这是 Spark 交互式开发必须用到的。

接下来讲一下数据仓库,首先是模型建设,第一层是基础表,在 Phoenix 中建立与 MySQL 一样的表。在基础表的基础上构建事实表(订单实时发生的表)和维度表(如中国有多少省多少市等更新不是很大的表),依据事实表和维度表进行代码开发,构建领域表,就是依据业务需求得出的结果存到领域表。数据校验是通过数据量比对,起先是在重库时做触发器,但是 MySQL 重库触发器支持不友好。通过改造 Phoenix 代码将数据写入 Redis,增加加一删除减一,MySQL 数据和 HBase 数据是一天一查一对比,当不相等直接调用 shell 脚本进行全表扫描。当前只采用 OMS、WMS 的库,QPS 处于 2000,1 条数据: 平均 60 列 495b。

上海久耶HBase实时数仓探索实践_第6张图片

业务场景开始是业务报表开发,有客诉妥投、ABC 订单、商业季度等。也提供一个 BI 自助分析,第三个就是双十一大屏和龙虎榜,同时使用了 BMS 系统,是一个商业结算系统。第五个是今年做的领导层和客户层的慧策,商业决策分析。

业务开发套路就是依据业务需求将数据存在那些表里面,需要将构建表的语句提取出来构建 Phoenix Table,然后 Kafka+Spark Streaming+Phoenix 进行数据的插入。接着就是 Spark 开发读和写,我们还利用了 DBeaver。我们建表使用了联合组件,由于公司集群规模不是很高,regionServer 是 38 台,COMPRESSION 是使用 SNAPPY,这是依据压缩比、解压性能。

上海久耶HBase实时数仓探索实践_第7张图片

接下来是一个经典开发案例 Kafka+Spark Streaming+Phoenix,Phoenix 可以理解为 MySQL 架包的 JDBC。我们并没有使用 Phoenix 的 Pool 池,官方也推荐使用正常 JDBC 文件,因为 JDBC 已经支持长连接,foreachPartition 拿到 Phoenix 的 JDBC,中间进行常见数据处理,Kafka 接收过来数据是 Json 格式,如何将其转化为 Phoenix 的 upset 语法和 delete 语法,完成后就将连接关闭。

上海久耶HBase实时数仓探索实践_第8张图片

上海久耶HBase实时数仓探索实践_第9张图片

数据流入 Phoenix 大数据平台是通过 bootstream 的全表扫描,其增量数据也是实时进入。业务代码开发首先将架包导入 pom 文件,如何找维度是将 Phoenix 的 Apache 下载到 IDEA,在测试类里面查找。Phoenix+Spark 读取有好几种,选择以上写法原因有:首先其支持列裁剪,第二支持 where 条件,configuration 指的是 Spark 的 HDFS 的 conf。

业务开发是多张表,Spark 表是 df,接下来就和 Phoenix 和 HBase 无关。接下来就是对接 Spark 业务开发逻辑处理,最后结果集会回写到 HBase 中。还是通过 Phoenix 写入,有追加、overwrite。HBase 没有很好地可视化工具,利用 DBeaver,支持 MYSQL、Oracle 等所有数据库类型,也支持二次开发借助于接口实现。

上海久耶HBase实时数仓探索实践_第10张图片

接下来介绍下集群调优参数,分为六个方面:(1)Linux parameters、(2)HDFS parameters、(3)HBase parameters、(4)GC parameters、(5)Monitor、(6)Bug。句柄数、文件数、线程数这些都是要调,因为 regionserver 在操作时需要 open file,处理时需要用到一些线程,一些系统都是架设在 Linux 上,因此集群调优都需要调它。需要注意的是改完后需要检查是否生效,立即生效是 sysctt-p。Spark 开发需要将数据频繁的写入 HBase 中,HBase 底层是 HDFS,在写入时就会出现问题,最后发现 Linux 系统参数没有调。

上海久耶HBase实时数仓探索实践_第11张图片

在正常的 HBase 节点机器上,swap 是设置为 0,这并不是禁用 swap 而是其惰性是最大的。由于我们公司由于业务系统较多,吃的内存比较紧,因此设为 10,这样可以使 job 慢一点但是不能挂,但是如果做实时就需要设置为 0。这个最终设置取决于你们自身业务环境,选择自己需要的就好。如果做 CBH 的平台部署必须要关闭大页面。

接下来分享一个有意思的参数 HDFS Parameters,正常调优是 CBH 界面打开、HBase 的 xml 文件打开。主要调优是 timeout 和 handler 参数,将其几倍放大,socket.timeout 在 HBase 的 xml 文件一定要部署,否则无法支持高并发操作。

上海久耶HBase实时数仓探索实践_第12张图片

当一个本机线程无法创建一个本机线程,这段代码打在 HDFS 的 dataload,当时 dataload 的内存配置是 8G,实际只使用 1G,这个时候就休要加上 echo “kernel.threads-max=196605”->/etc/sysctl.conf,echo"kernel.pid_max=196605"->/etc/sysctl.conf,echo “vm.max_map_count=393210”-> /etc/sysctl.conf 三个参数,这其实是底层 Linux 抛出的错误。提醒一点 socket.timeout 参数不仅在 HDFS 中需要配置,在 HBase 中也需要配置。

GC 是 regionserver 配置,但是配置是 CDH 配置,GC 默认垃圾选择器是 CMS,需要将其改为 GE,如果需要配置可以去尝试下,小米以前分享过。可以对参数进行调试进行压错调优,尤其大数据平台开发尤其如此。

上海久耶HBase实时数仓探索实践_第13张图片

项目上线需要做监控,第一个就是 HBase 的读和写,绿色是写,但是读存在两个波峰,因为我们的调度平台以一个小时将所有 job 调度完。图中 Y 轴是每秒的请求量,如果写的量上来了或者读的波峰没有规律,就有可能是集群宕了。

第二个监控的指标是 FDS,就是 Regionserver 的文件句柄数,如果请求很多,句柄数会很高,因为其底层依赖于 Linux,如果超过 Linux 设置值机器容易夯住下线,导致 CPU 不正常,这时需要后台强制机器下线。然后需要监控 Zookeeper,监控的是 Zookeeper Open Connections,因为 HBase 进行操作需要打开的连接,当业务场景为长服务,如 Spark streaming 一直运行,先前尝试用 SparkSQL+Phoenix 做一个长服务,因为调度都是通过 shell 脚本调度,在资源紧张时需要抢资源,在 submit 时需要申请资源(大约 30S),线上是不允许的。最后采用 Spark streaming+Spark SQL+Phoenix JDBC,Spark streaming 是实时的每隔一小时判断进行数据处理,这个时候 Zookeeper Open Connections 就随着递增趋势上涨,当到 Connection 数(默认 500)CDH 会杀掉。后来改为水平,利用 PHOENIX-4319:Zookeeper connection should be closed immediately 解决问题。

上海久耶HBase实时数仓探索实践_第14张图片

接下来讲一下 Kafka 如何做监控,其实只需要上面一幅图,上图绿色指标读,Received 是蓝色线,相当于生产者写到 Kafka 里面,绿色是 Spark streaming 进行消费,相当于 Fetched。这幅图相当于实时同步架构,消息没有做积压。但是为什么波峰会比它高,原因是数据通过 Maxwell 发送到 Kafka 时是一个 Json 数据,但是 Kafka 消费时需要额外加一些东西(来自哪个 topic、offset 是什么等),如果两条线没问题就是没出问题。

Bug 方面,PHOENIX-4056:java.lang.IllegalArgumentException: Can not create a Path from an empty string,先前有问题采用降版本,目前已经解决,方案在社区里有。SPARK-22968:java.lang.IllegalStateException: No current assignment for partition kssh-2,这个是 Sparkstreaming 读 Kafka 时抛出的错误,这个在 Spark2.4.0 有新的补丁。

接下来分享两个案例,分为两种,一种是 3 次 RIT,园区断电机器挂掉出现 RIT。HBase 有个 WAL,数据基本不会丢,只需要将机器重启。重启过程会有一些 RIT 操作,如果 regionserver 挂了申请维护时间,尝试重启 regionserver 节点,如果不行重启 HBase 集群,这个时候需要看 HBase 的 master 的 active 的 log 日志。还有一次是高并发内存不够用,regionserver 挂掉,重启后在 CDH 的 HBase 运行正常,但是在监控页面 HBase 还是异常,这时候只需要将 CMS 的 serviceMonitor 重启就 OK。第三次 RIT 事故 regionserver 挂掉,尝试使用 HBCK 命令修复问题还是很多。最后通过日志分析发现 Hlog 有问题,通过 HDFS 命令将文件移到某个地方,重启就 OK 了。丢失的数据通过 Maxwell 恢复,预估事故发生点通过全表扫描进行恢复。

上海久耶HBase实时数仓探索实践_第15张图片

接下来分享一个三支烟的故事,数据来源于阿里云,自建机房需要通过 VPN 将数据拉倒本地机房。双十一所有仓库都在运作,MySQL 机器扛不住导致延迟比较大,延迟约半个小时。需要在 T2 将数据完全恢复,解决方案直接将 Maxwell 架设到阿里云进行实时同步,数据进行全表扫描,只需要扫描大屏显示需要的数据,将 T1 到 T2 的数据进行 SparkSQL,将计算结果写到 redis 里面,Sparkstreaming 进行现场改,只判断 T2 流进的数据才会将 T2 的基础值进行累积计算,实时 Job 跑了 15 分钟数据就实时过来了。

本文根据上海久耶大数据研发工程师武基鹏在中国 HBase 技术社区第四届 MeetUp 上海站中分享的《基于 HBase 实时数仓探索实践》编辑整理而成。

转载自:https://www.infoq.cn/article/L6yfEtYlMNAl5p_DmDgL

你可能感兴趣的:(大数据,hbase)