图像光照校正处理(白平衡)及其速度优化 -opencv+python

https://github.com/18150167970/image_process_tool/blob/master/lighting_enhancement.py

先上效果图,从上到下分别为

img : 原图
img1:均值白平衡法
img2: 完美反射
img3: 灰度世界假设
img4: 基于图像分析的偏色检测及颜色校正方法
img5: 动态阈值算法
img6: gamma校正
img7: HDR校正

图像光照校正处理(白平衡)及其速度优化 -opencv+python_第1张图片

图像光照校正处理(白平衡)及其速度优化 -opencv+python_第2张图片

7种变换原理:

 灰度世界、完美反射、动态阈值原理及其c++实现:  https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html

基于图像分析的偏色检测及颜色校正方法:http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ckjs200805003

gamma校正:https://blog.csdn.net/tkokof1/article/details/87878442

HDR校正:contrast image correction

7种变换代码:

参考了:https://blog.csdn.net/qq_36187544/article/details/97657927 中几种白平衡的实现,对其进行速度优化,并增加了新的白平衡算法(伽马校正与HDR校正)。

github地址为:https://github.com/18150167970/image_process_tool/blob/master/lighting_enhancement.py  欢迎提意见和star

# Copyright 2020 chenli Authors. All Rights Reserved.
import cv2
import numpy as np
import math


def mean_white_balance(img):
    """
    第一种简单的求均值白平衡法
    :param img: cv2.imread读取的图片数据
    :return: 返回的白平衡结果图片数据
    """
    # 读取图像
    b, g, r = cv2.split(img)
    r_avg = cv2.mean(r)[0]
    g_avg = cv2.mean(g)[0]
    b_avg = cv2.mean(b)[0]
    # 求各个通道所占增益
    k = (r_avg + g_avg + b_avg) / 3
    kr = k / r_avg
    kg = k / g_avg
    kb = k / b_avg
    r = cv2.addWeighted(src1=r, alpha=kr, src2=0, beta=0, gamma=0)
    g = cv2.addWeighted(src1=g, alpha=kg, src2=0, beta=0, gamma=0)
    b = cv2.addWeighted(src1=b, alpha=kb, src2=0, beta=0, gamma=0)
    balance_img = cv2.merge([b, g, r])
    return balance_img

def perfect_reflective_white_balance(img_input):
    """
    完美反射白平衡
    STEP 1:计算每个像素的R\G\B之和
    STEP 2:按R+G+B值的大小计算出其前Ratio%的值作为参考点的的阈值T
    STEP 3:对图像中的每个点,计算其中R+G+B值大于T的所有点的R\G\B分量的累积和的平均值
    STEP 4:对每个点将像素量化到[0,255]之间
    依赖ratio值选取而且对亮度最大区域不是白色的图像效果不佳。
    :param img: cv2.imread读取的图片数据
    :return: 返回的白平衡结果图片数据
    """
    img = img_input.copy()
    b, g, r = cv2.split(img)
    m, n, t = img.shape
    sum_ = np.zeros(b.shape)
    # for i in range(m):
    #     for j in range(n):
    #         sum_[i][j] = int(b[i][j]) + int(g[i][j]) + int(r[i][j])
    sum_ = b.astype(np.int32) + g.astype(np.int32) + r.astype(np.int32)

    hists, bins = np.histogram(sum_.flatten(), 766, [0, 766])
    Y = 765
    num, key = 0, 0
    ratio = 0.01
    while Y >= 0:
        num += hists[Y]
        if num > m * n * ratio / 100:
            key = Y
            break
        Y = Y - 1

    # sum_b, sum_g, sum_r = 0, 0, 0
    # for i in range(m):
    #     for j in range(n):
    #         if sum_[i][j] >= key:
    #             sum_b += b[i][j]
    #             sum_g += g[i][j]
    #             sum_r += r[i][j]
    #             time = time + 1
    sum_b = b[sum_ >= key].sum()
    sum_g = g[sum_ >= key].sum()
    sum_r = r[sum_ >= key].sum()
    time = (sum_ >= key).sum()

    avg_b = sum_b / time
    avg_g = sum_g / time
    avg_r = sum_r / time

    maxvalue = float(np.max(img))
    # maxvalue = 255
    # for i in range(m):
    #     for j in range(n):
    #         b = int(img[i][j][0]) * maxvalue / int(avg_b)
    #         g = int(img[i][j][1]) * maxvalue / int(avg_g)
    #         r = int(img[i][j][2]) * maxvalue / int(avg_r)
    #         if b > 255:
    #             b = 255
    #         if b < 0:
    #             b = 0
    #         if g > 255:
    #             g = 255
    #         if g < 0:
    #             g = 0
    #         if r > 255:
    #             r = 255
    #         if r < 0:
    #             r = 0
    #         img[i][j][0] = b
    #         img[i][j][1] = g
    #         img[i][j][2] = r

    b = img[:, :, 0].astype(np.int32) * maxvalue / int(avg_b)
    g = img[:, :, 1].astype(np.int32) * maxvalue / int(avg_g)
    r = img[:, :, 2].astype(np.int32) * maxvalue / int(avg_r)
    b[b > 255] = 255
    b[b < 0] = 0
    g[g > 255] = 255
    g[g < 0] = 0
    r[r > 255] = 255
    r[r < 0] = 0
    img[:, :, 0] = b
    img[:, :, 1] = g
    img[:, :, 2] = r

    return img


def gray_world_assumes_white_balance(img):
    """
    灰度世界假设
    :param img: cv2.imread读取的图片数据
    :return: 返回的白平衡结果图片数据
    """
    B, G, R = np.double(img[:, :, 0]), np.double(img[:, :, 1]), np.double(img[:, :, 2])
    B_ave, G_ave, R_ave = np.mean(B), np.mean(G), np.mean(R)
    K = (B_ave + G_ave + R_ave) / 3
    Kb, Kg, Kr = K / B_ave, K / G_ave, K / R_ave
    Ba = (B * Kb)
    Ga = (G * Kg)
    Ra = (R * Kr)

    # for i in range(len(Ba)):
    #     for j in range(len(Ba[0])):
    #         Ba[i][j] = 255 if Ba[i][j] > 255 else Ba[i][j]
    #         Ga[i][j] = 255 if Ga[i][j] > 255 else Ga[i][j]
    #         Ra[i][j] = 255 if Ra[i][j] > 255 else Ra[i][j]
    Ba[Ba > 255] = 255
    Ga[Ga > 255] = 255
    Ra[Ra > 255] = 255

    # print(np.mean(Ba), np.mean(Ga), np.mean(Ra))
    dst_img = np.uint8(np.zeros_like(img))
    dst_img[:, :, 0] = Ba
    dst_img[:, :, 1] = Ga
    dst_img[:, :, 2] = Ra
    return dst_img


def color_correction_of_image_analysis(img):
    """
    基于图像分析的偏色检测及颜色校正方法
    :param img: cv2.imread读取的图片数据
    :return: 返回的白平衡结果图片数据
    """

    def detection(img):
        """计算偏色值"""
        img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
        l, a, b = cv2.split(img_lab)
        d_a, d_b, M_a, M_b = 0, 0, 0, 0
        for i in range(m):
            for j in range(n):
                d_a = d_a + a[i][j]
                d_b = d_b + b[i][j]
        d_a, d_b = (d_a / (m * n)) - 128, (d_b / (n * m)) - 128
        D = np.sqrt((np.square(d_a) + np.square(d_b)))

        for i in range(m):
            for j in range(n):
                M_a = np.abs(a[i][j] - d_a - 128) + M_a
                M_b = np.abs(b[i][j] - d_b - 128) + M_b

        M_a, M_b = M_a / (m * n), M_b / (m * n)
        M = np.sqrt((np.square(M_a) + np.square(M_b)))
        k = D / M
        # print('偏色值:%f' % k)
        return

    b, g, r = cv2.split(img)
    # print(img.shape)
    m, n = b.shape
    # detection(img)

    I_r_2 = np.zeros(r.shape)
    I_b_2 = np.zeros(b.shape)
    # sum_I_r_2, sum_I_r, sum_I_b_2, sum_I_b, sum_I_g = 0, 0, 0, 0, 0
    # max_I_r_2, max_I_r, max_I_b_2, max_I_b, max_I_g = int(r[0][0] ** 2), int(r[0][0]), int(b[0][0] ** 2), int(
    #     b[0][0]), int(g[0][0])
    #
    # for i in range(m):
    #     for j in range(n):
    #         I_r_2[i][j] = int(r[i][j] ** 2)
    #         I_b_2[i][j] = int(b[i][j] ** 2)
    #         sum_I_r_2 = I_r_2[i][j] + sum_I_r_2
    #         sum_I_b_2 = I_b_2[i][j] + sum_I_b_2
    #         sum_I_g = g[i][j] + sum_I_g
    #         sum_I_r = r[i][j] + sum_I_r
    #         sum_I_b = b[i][j] + sum_I_b
    #         if max_I_r < r[i][j]:
    #             max_I_r = r[i][j]
    #         if max_I_r_2 < I_r_2[i][j]:
    #             max_I_r_2 = I_r_2[i][j]
    #         if max_I_g < g[i][j]:
    #             max_I_g = g[i][j]
    #         if max_I_b_2 < I_b_2[i][j]:
    #             max_I_b_2 = I_b_2[i][j]
    #         if max_I_b < b[i][j]:
    #             max_I_b = b[i][j]

    I_r_2 = (r.astype(np.float32) ** 2).astype(np.float32)
    I_b_2 = (b.astype(np.float32) ** 2).astype(np.float32)
    sum_I_r_2 = I_r_2.sum()
    sum_I_b_2 = I_b_2.sum()
    sum_I_g = g.sum()
    sum_I_r = r.sum()
    sum_I_b = b.sum()

    max_I_r = r.max()
    max_I_g = g.max()
    max_I_b = b.max()
    max_I_r_2 = I_r_2.max()
    max_I_b_2 = I_b_2.max()

    [u_b, v_b] = np.matmul(np.linalg.inv([[sum_I_b_2, sum_I_b], [max_I_b_2, max_I_b]]), [sum_I_g, max_I_g])
    [u_r, v_r] = np.matmul(np.linalg.inv([[sum_I_r_2, sum_I_r], [max_I_r_2, max_I_r]]), [sum_I_g, max_I_g])
    # print(u_b, v_b, u_r, v_r)

    # b0, g0, r0 = np.zeros(b.shape, np.uint8), np.zeros(g.shape, np.uint8), np.zeros(r.shape, np.uint8)
    # for i in range(m):
    #     for j in range(n):
    #         b_point = u_b * (b[i][j] ** 2) + v_b * b[i][j]
    #         g0[i][j] = g[i][j]
    #         # r0[i][j] = r[i][j]
    #         r_point = u_r * (r[i][j] ** 2) + v_r * r[i][j]
    #         if r_point > 255:
    #             r0[i][j] = 255
    #         else:
    #             if r_point < 0:
    #                 r0[i][j] = 0
    #             else:
    #                 r0[i][j] = r_point
    #         if b_point > 255:
    #             b0[i][j] = 255
    #         else:
    #             if b_point < 0:
    #                 b0[i][j] = 0
    #             else:
    #                 b0[i][j] = b_point

    b_point = u_b * (b.astype(np.float32) ** 2) + v_b * b.astype(np.float32)
    r_point = u_r * (r.astype(np.float32) ** 2) + v_r * r.astype(np.float32)

    b_point[b_point > 255] = 255
    b_point[b_point < 0] = 0
    b = b_point.astype(np.uint8)

    r_point[r_point > 255] = 255
    r_point[r_point < 0] = 0
    r = r_point.astype(np.uint8)

    return cv2.merge([b, g, r])


def dynamic_threshold_white_balance(img):
    """
    动态阈值算法
    算法分为两个步骤:白点检测和白点调整。
    只是白点检测不是与完美反射算法相同的认为最亮的点为白点,而是通过另外的规则确定
    :param img: cv2.imread读取的图片数据
    :return: 返回的白平衡结果图片数据
    """

    b, g, r = cv2.split(img)
    """
    YUV空间
    """

    def con_num(x):
        if x > 0:
            return 1
        if x < 0:
            return -1
        if x == 0:
            return 0

    yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
    (y, u, v) = cv2.split(yuv_img)
    # y, u, v = cv2.split(img)
    m, n = y.shape
    sum_u, sum_v = 0, 0
    max_y = np.max(y.flatten())
    # print(max_y)

    # for i in range(m):
    #     for j in range(n):
    #         sum_u = sum_u + u[i][j]
    #         sum_v = sum_v + v[i][j]

    sum_u = u.sum()
    sum_v = v.sum()

    avl_u = sum_u / (m * n)
    avl_v = sum_v / (m * n)
    du, dv = 0, 0
    # print(avl_u, avl_v)

    # for i in range(m):
    #     for j in range(n):
    #         du = du + np.abs(u[i][j] - avl_u)
    #         dv = dv + np.abs(v[i][j] - avl_v)

    du = (np.abs(u - avl_u)).sum()
    dv = (np.abs(v - avl_v)).sum()

    avl_du = du / (m * n)
    avl_dv = dv / (m * n)
    num_y, yhistogram, ysum = np.zeros(y.shape), np.zeros(256), 0
    radio = 0.5  # 如果该值过大过小,色温向两极端发展

    # for i in range(m):
    #     for j in range(n):
    #         value = 0
    #         if np.abs(u[i][j] - (avl_u + avl_du * con_num(avl_u))) < radio * avl_du or np.abs(
    #                 v[i][j] - (avl_v + avl_dv * con_num(avl_v))) < radio * avl_dv:
    #             value = 1
    #         else:
    #             value = 0
    #
    #         if value <= 0:
    #             continue
    #         num_y[i][j] = y[i][j]
    #         yhistogram[int(num_y[i][j])] = 1 + yhistogram[int(num_y[i][j])]
    #         ysum += 1

    u_temp = np.abs(u.astype(np.float32) - (avl_u.astype(np.float32) + avl_du * con_num(avl_u))) < radio * avl_du
    v_temp = np.abs(v.astype(np.float32) - (avl_v.astype(np.float32) + avl_dv * con_num(avl_v))) < radio * avl_dv
    temp = u_temp | v_temp
    num_y[temp] = y[temp]
    # yhistogram = cv2.calcHist(num_y, 0, u_temp | v_temp, [256], [0, 256])
    # yhistogram[num_y[u_temp | v_temp].flatten().astype(np.int32)] += 1
    for i in range(m):
        for j in range(n):
            if temp[i][j] > 0:
                yhistogram[int(num_y[i][j])] = 1 + yhistogram[int(num_y[i][j])]
    ysum = (temp).sum()

    sum_yhistogram = 0
    # hists2, bins = np.histogram(yhistogram, 256, [0, 256])
    # print(hists2)
    Y = 255
    num, key = 0, 0
    while Y >= 0:
        num += yhistogram[Y]
        if num > 0.1 * ysum:  # 取前10%的亮点为计算值,如果该值过大易过曝光,该值过小调整幅度小
            key = Y
            break
        Y = Y - 1
    # print(key)
    sum_r, sum_g, sum_b, num_rgb = 0, 0, 0, 0

    # for i in range(m):
    #     for j in range(n):
    #         if num_y[i][j] > key:
    #             sum_r = sum_r + r[i][j]
    #             sum_g = sum_g + g[i][j]
    #             sum_b = sum_b + b[i][j]
    #             num_rgb += 1

    num_rgb = (num_y > key).sum()
    sum_r = r[num_y > key].sum()
    sum_g = g[num_y > key].sum()
    sum_b = b[num_y > key].sum()

    if num_rgb == 0:
        return img
    # print("num_rgb", num_rgb)
    avl_r = sum_r / num_rgb
    avl_g = sum_g / num_rgb
    avl_b = sum_b / num_rgb

    # for i in range(m):
    #     for j in range(n):
    #         b_point = int(b[i][j]) * int(max_y) / avl_b
    #         g_point = int(g[i][j]) * int(max_y) / avl_g
    #         r_point = int(r[i][j]) * int(max_y) / avl_r
    #         if b_point > 255:
    #             b[i][j] = 255
    #         else:
    #             if b_point < 0:
    #                 b[i][j] = 0
    #             else:
    #                 b[i][j] = b_point
    #         if g_point > 255:
    #             g[i][j] = 255
    #         else:
    #             if g_point < 0:
    #                 g[i][j] = 0
    #             else:
    #                 g[i][j] = g_point
    #         if r_point > 255:
    #             r[i][j] = 255
    #         else:
    #             if r_point < 0:
    #                 r[i][j] = 0
    #             else:
    #                 r[i][j] = r_point

    b_point = b.astype(np.float32) * int(max_y) / avl_b
    g_point = g.astype(np.float32) * int(max_y) / avl_g
    r_point = r.astype(np.float32) * int(max_y) / avl_r

    b_point[b_point > 255] = 255
    b_point[b_point < 0] = 0
    b = b_point.astype(np.uint8)

    g_point[g_point > 255] = 255
    g_point[g_point < 0] = 0
    g = g_point.astype(np.uint8)

    r_point[r_point > 255] = 255
    r_point[r_point < 0] = 0
    r = r_point.astype(np.uint8)

    return cv2.merge([b, g, r])


def gamma_trans(img):
    """
    gamma 校正
    使用自适应gamma校正
    :param img: cv2.imread读取的图片数据
    :return: 返回的gamma校正后的图片数据
    """
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    mean = np.mean(img_gray)
    gamma = math.log10(0.5) / math.log10(mean / 255)  # 公式计算gamma
    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]  # 建立映射表
    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)  # 颜色值为整数
    return cv2.LUT(img, gamma_table)  # 图片颜色查表。另外可以根据光强(颜色)均匀化原则设计自适应算法。


def contrast_image_correction(img):
    """
    contrast image correction论文的python复现,HDR技术
    :param img: cv2.imread读取的图片数据
    :return: 返回的HDR校正后的图片数据
    """
    img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
    mv = cv2.split(img_yuv)
    img_y = mv[0].copy();

    # temp = img_y
    temp = cv2.bilateralFilter(mv[0], 9, 50, 50)
    # for i in range(len(img)):
    #     for j in range(len(img[0])):
    #         exp = np.power(2, (128 - (255 - temp[i][j])) / 128.0)
    #         temp[i][j] = int(255 * np.power(img_y[i][j] / 255.0, exp))
    #         # print(exp.dtype)
    # print(temp.dtype)
    exp = np.power(2, (128.0 - (255 - temp).astype(np.float32)) / 128.0)
    temp = (255 * np.power(img_y.flatten() / 255.0, exp.flatten())).astype(np.uint8)
    temp = temp.reshape((img_y.shape))

    dst = img.copy()

    img_y[img_y == 0] = 1
    for k in range(3):
        val = temp / img_y
        val1 = img[:, :, k].astype(np.int32) + img_y.astype(np.int32)
        val2 = (val * val1 + img[:, :, k] - img_y) / 2
        dst[:, :, k] = val2.astype(np.int32)

    # for i in range(len(img)):
    #     for j in range(len(img[0])):
    #         if (img_y[i][j] == 0):
    #             dst[i, j, :] = 0
    #         else:
    #             for k in range(3):
    #                 val = temp[i, j]/img_y[i, j]
    #                 val1 = int(img[i, j, k]) + int(img_y[i, j])
    #                 val2 = (val * val1+ img[i, j, k] - img_y[i, j]) / 2
    #                 dst[i, j, k] = int(val2)
    #             """
    #             BUG:直接用下面计算方法会导致值溢出,导致计算结果不正确
    #             """
    # dst[i, j, 0] = (temp[i, j] * (img[i, j, 0] + img_y[i, j]) / img_y[i, j] + img[i, j, 0] - img_y[
    #     i, j]) / 2
    # dst[i, j, 1] = (temp[i, j] * (img[i, j, 1] + img_y[i, j]) / img_y[i, j] + img[i, j, 1] - img_y[
    #     i, j]) / 2
    # dst[i, j, 2] = (temp[i, j] * (img[i, j, 2] + img_y[i, j]) / img_y[i, j] + img[i, j, 2] - img_y[
    #     i, j]) / 2

    return dst



if __name__ == '__main__':
    """
    img : 原图
    img1:均值白平衡法
    img2: 完美反射
    img3: 灰度世界假设
    img4: 基于图像分析的偏色检测及颜色校正方法
    img5: 动态阈值算法
    img6: gamma校正
    img7: HDR校正
    """

    import time

    img = cv2.imread("4.jpg")
    start_time = time.time()

    # img = cv2.resize(img, (256, 512), cv2.INTER_LINEAR)
    # img1 = mean_white_balance(img)
    # img2 = perfect_reflective_white_balance(img)
    # img3 = gray_world_assumes_white_balance(img)
    # img4 = color_correction_of_image_analysis(img)
    # img5 = dynamic_threshold_white_balance(img)
    # img6 = gamma_trans(img)  # gamma变换
    # img7 = contrast_image_correction(img)
    img8 = flip_img(img)
    end_time = time.time()
    print("use time=", end_time - start_time)
    cv2.imshow("image1", img)
    cv2.imshow("image2", img8)
    # img_stack = np.vstack([img, img1, img2, img3])
    # img_stack2 = np.vstack([img4, img5, img6, img7])
    # cv2.imshow("image1",img_stack)
    # cv2.imshow("image2",img_stack2)
    cv2.waitKey(0)

 

参考文献:

灰度世界、完美反射、动态阈值原理及其c++实现:  https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html

基于图像分析的偏色检测及颜色校正方法:http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ckjs200805003

gamma校正:https://blog.csdn.net/tkokof1/article/details/87878442

HDR校正:contrast image correction

代码实现:https://blog.csdn.net/qq_36187544/article/details/97657927 

 

have fun(笑)

你可能感兴趣的:(图像处理,opencv)