基于PCL库对三维空间点的K-Means聚类算法的实现

K-Means算法简介

K-Means算法是一种常用的聚类算法,因其思想简单、容易实现而收到广泛的运用。其思想大概是从要聚类的样本中选取K个样本,然后遍历所有样本,对每个样本计算其与K个样本间的距离(可以为欧氏距离或余弦距离),然后将其类别归为距离最小的样本所属类别,这样的话,所有样本就都找到各自所属的类别;然后分别重新计算K个类别中样本的质心;之后返回第一步继续迭代执行,如此直到K个类别中样本的质心不再移动或移动的非常小。整个过程往往要不了几次就达到收敛。

基于PCL库对三维空间点的K-Means聚类算法的实现_第1张图片

基于PCL库对三维空间点的K-Means聚类算法的实现

在三维点云处理中我们经常要对点云进行聚类分割处理,如建筑物与地面、桌面与水杯等的分割,以便于我们可以在后续三维重建中得到更好的效果。这时比较好的聚类方法有欧式聚类和K-Means聚类。这里简要地介绍下基于PCL库对三维空间点的K-Means聚类算法的实现。

相关头文件common.h中部分内容

//笛卡尔坐标系中三维点坐标
typedef struct st_pointxyz
{
	float x;
	float y;
	float z;
}st_pointxyz;
typedef struct st_point
{
	st_pointxyz pnt;
	int groupID;
	st_point()
	{

	}
	st_point(st_pointxyz &p, int id)
	{
		pnt = p;
		groupID = id;
	}
}st_point;

class KMeans
{
public:
	int m_k;

	typedef std::vector VecPoint_t;
	
	VecPoint_t mv_pntcloud;    //要聚类的点云
	std::vector m_grp_pntcloud;    //K类,每一类存储若干点
	std::vector mv_center;    //每个类的中心

	KMeans()
	{
		m_k = 0;
	}

	inline void SetK(int k_)
	{
		m_k = k_;
		m_grp_pntcloud.resize(m_k);
	}
	//设置输入点云
	bool SetInputCloud(PointCloud::Ptr pPntCloud);

	//初始化最初的K个类的中心
	bool InitKCenter(st_pointxyz pc_arr[]);

	//聚类
	bool Cluster();

	//更新K类的中心
	bool UpdateGroupCenter(std::vector &grp_pntcloud, std::vector ¢er);

	//计算两个点间的欧氏距离
	double DistBetweenPoints(st_pointxyz &p1, st_pointxyz &p2);
	
	//是否存在中心点移动
	bool ExistCenterShift(std::vector &prev_center, std::vector &cur_center);

	//将聚类的点分别存到各自的pcd文件中
	bool SaveFile(const char *prex_name);
	//将聚类的点分别存到各自的pcd文件中
	bool SaveFile(const char *dir_name, const char *prex_name);
};

实现文件kmeans.cpp中内容为:

#include "common.h"

const float DIST_NEAR_ZERO = 0.001;

extern char szFileName[256];

bool KMeans::InitKCenter(st_pointxyz pnt_arr[])
{
	if (m_k == 0)
	{
		PCL_ERROR("在此之前必须要调用setK()函数\n");
		return false;
	}

	mv_center.resize(m_k);
	for (size_t i = 0; i < m_k; ++i)
	{
		mv_center[i] = pnt_arr[i];
	}
    return true;
}

bool KMeans::SetInputCloud(PointCloud::Ptr pPntCloud)
{
	size_t pntCount = (size_t)pPntCloud->points.size();
	//mv_pntcloud.resize(pntCount);
	for (size_t i = 0; i < pntCount; ++i)
	{
		st_point point;
		point.pnt.x = pPntCloud->points[i].x;
		point.pnt.y = pPntCloud->points[i].y;
		point.pnt.z = pPntCloud->points[i].z;
		point.groupID = 0;

		mv_pntcloud.push_back(point);
	}

	return true;
}

bool KMeans::Cluster()
{
	std::vector v_center(mv_center.size());

	do
	{
		for (size_t i = 0, pntCount = mv_pntcloud.size(); i < pntCount; ++i)
		{
			double min_dist = DBL_MAX;
			int pnt_grp = 0;
			for (size_t j = 0; j < m_k; ++j)
			{
				double dist = DistBetweenPoints(mv_pntcloud[i].pnt, mv_center[j]);
				if (min_dist - dist > 0.000001)
				{
					min_dist = dist;
					pnt_grp = j;
				}
			}
			m_grp_pntcloud[pnt_grp].push_back(st_point(mv_pntcloud[i].pnt, pnt_grp));
		}

		//保存上一次迭代的中心点
		for (size_t i = 0; i < mv_center.size(); ++i)
		{
			v_center[i] = mv_center[i];
		}

		if (!UpdateGroupCenter(m_grp_pntcloud, mv_center))
		{
			return false;
		}
		if ( !ExistCenterShift(v_center, mv_center))
		{
			break;
		}
		for (size_t i = 0; i < m_k; ++i){
			m_grp_pntcloud[i].clear();
		}

	}while(true);

	return true;
}

double KMeans::DistBetweenPoints(st_pointxyz &p1, st_pointxyz &p2)
{
	double dist = 0;
	double x_diff = 0, y_diff = 0, z_diff = 0;

	x_diff = p1.x - p2.x;
	y_diff = p1.y - p2.y;
	z_diff = p1.z - p2.z;
	dist = sqrt(x_diff * x_diff + y_diff * y_diff + z_diff * z_diff);
	
	return dist;
}

bool KMeans::UpdateGroupCenter(std::vector &grp_pntcloud, std::vector ¢er)
{
    if (center.size() != m_k)
    {
		PCL_ERROR("类别的个数不为K\n");
		return false;
    }

	for (size_t i = 0; i < m_k; ++i)
	{
		float x = 0, y = 0, z = 0;
		size_t pnt_num_in_grp = grp_pntcloud[i].size();

		for (size_t j = 0; j < pnt_num_in_grp; ++j)
		{			
			x += grp_pntcloud[i][j].pnt.x;
			y += grp_pntcloud[i][j].pnt.y;
			z += grp_pntcloud[i][j].pnt.z;
		}
		x /= pnt_num_in_grp;
		y /= pnt_num_in_grp;
		z /= pnt_num_in_grp;
		center[i].x = x;
		center[i].y = y;
		center[i].z = z;
	}
    return true;
}

//是否存在中心点移动
bool KMeans::ExistCenterShift(std::vector &prev_center, std::vector &cur_center)
{
	for (size_t i = 0; i < m_k; ++i)
	{
		double dist = DistBetweenPoints(prev_center[i], cur_center[i]);
		if (dist > DIST_NEAR_ZERO)
		{
			return true;
		}
	}

	return false;
}

//将聚类的点分别存到各自的pcd文件中
bool KMeans::SaveFile(const char *prex_name)
{
    for (size_t i = 0; i < m_k; ++i)
    {
		pcl::PointCloud::Ptr p_pnt_cloud(new pcl::PointCloud ());

		for (size_t j = 0, grp_pnt_count = m_grp_pntcloud[i].size(); j < grp_pnt_count; ++j)
		{
			pcl::PointXYZ pt;
			pt.x = m_grp_pntcloud[i][j].pnt.x;
			pt.y = m_grp_pntcloud[i][j].pnt.y;
			pt.z = m_grp_pntcloud[i][j].pnt.z;

			p_pnt_cloud->points.push_back(pt);
		}

		p_pnt_cloud->width = (int)m_grp_pntcloud[i].size();
		p_pnt_cloud->height = 1;

		char newFileName[256] = {0};
		char indexStr[16] = {0};

		strcat(newFileName, szFileName);
		strcat(newFileName, "-");
		strcat(newFileName, prex_name);
		strcat(newFileName, "-");
		sprintf(indexStr, "%d", i + 1);
		strcat(newFileName, indexStr);
		strcat(newFileName, ".pcd");
		savePCDFileASCII(newFileName, *p_pnt_cloud);
    }
    
	return true;
}

bool KMeans::SaveFile(const char *dir_name, const char *prex_name)
{
	for (size_t i = 0; i < m_k; ++i)
	{
		pcl::PointCloud::Ptr p_pnt_cloud(new pcl::PointCloud ());

		for (size_t j = 0, grp_pnt_count = m_grp_pntcloud[i].size(); j < grp_pnt_count; ++j)
		{
			pcl::PointXYZ pt;
			pt.x = m_grp_pntcloud[i][j].pnt.x;
			pt.y = m_grp_pntcloud[i][j].pnt.y;
			pt.z = m_grp_pntcloud[i][j].pnt.z;

			p_pnt_cloud->points.push_back(pt);
		}

		p_pnt_cloud->width = (int)m_grp_pntcloud[i].size();
		p_pnt_cloud->height = 1;

		char newFileName[256] = {0};
		char indexStr[16] = {0};

		strcat(newFileName, dir_name);
		strcat(newFileName, "/");
		strcat(newFileName, prex_name);
		strcat(newFileName, "-");
		sprintf(indexStr, "%d", i + 1);
		strcat(newFileName, indexStr);
		strcat(newFileName, ".pcd");
		savePCDFileASCII(newFileName, *p_pnt_cloud);
	}

	return true;
}
下面编写测试用例,测试效果:

构造一个以(0, 0, 0)为球心,半径为2的球体;一个左下角坐标为(2.5, 2.5, 2.5),棱长为2的正方体;一个圆心为(1, 1, -3),半径为1的圆。然后初始类的中心分别为上述三个体的中心,并执行K-Means聚类算法,将聚类后的点云数据分别保存到对应的文件中。代码如下:

void test_kmeans_manual_consdata()
{
	//构造球体
	float radius = 2;  
	for (float r = 0; r < radius; r += 0.1)
	{
		for (float angle1 = 0.0; angle1 <= 180.0; angle1 += 5.0)  
		{  
			for (float angle2 = 0.0; angle2 <= 360.0; angle2 += 5.0)  
			{  
				pcl::PointXYZ basic_point;  

				basic_point.x = radius * sinf(pcl::deg2rad(angle1)) * cosf(pcl::deg2rad(angle2));  
				basic_point.y = radius * sinf(pcl::deg2rad(angle1)) * sinf(pcl::deg2rad(angle2));  
				basic_point.z = radius * cosf(pcl::deg2rad(angle1));  
				cloud->points.push_back(basic_point);  
			}  
		}
	}

	//构造立方体
	float cube_len = 2;
	for (float x = 0; x < cube_len; x += 0.1)
	{
		for (float y = 0; y < cube_len; y += 0.1)
		{
			for (float z = 0; z < cube_len; z += 0.1)
			{
				pcl::PointXYZ basic_point;  

				//沿着向量(2.5, 2.5, 2.5)平移
				basic_point.x = x + 2.5;  
				basic_point.y = y + 2.5;  
				basic_point.z = z + 2.5;  
				cloud->points.push_back(basic_point);  
			}
		}
	}

	//构造圆形平面
	float R = 1;
	for (float radius = 0; radius < R; radius += 0.05)
	{
		for (float r = 0; r < radius; r += 0.05)
		{
			for (float ang = 0; ang <= 360.0; ang += 5.0)
			{
				pcl::PointXYZ basic_point;  

				basic_point.x = radius * sinf(pcl::deg2rad(ang)) +3;  
				basic_point.y = radius * cosf(pcl::deg2rad(ang)) + 3;  
				basic_point.z = -3;  
				cloud->points.push_back(basic_point);  
			}
		}
	}

	cloud->width = (int)cloud->points.size();  
	cloud->height = 1;

	//开始KMeans聚类
	KMeans kmeans;
	st_pointxyz center_arr[3] = {
		{0, 0, 0},
		{2.5, 2.5, 2.5}, 
		{3, 3, -3}
	};

	kmeans.SetInputCloud(cloud);
	kmeans.SetK(3);
	kmeans.InitKCenter(center_arr);
	kmeans.Cluster();
	kmeans.SaveFile(".", "k3");
}
执行完后可以看到生成了三个文件k3-1.pcd、k3-2.pcd、k3-3.pcd,用pcd_viewer_release.exe工具打开这三个文件得到:

基于PCL库对三维空间点的K-Means聚类算法的实现_第2张图片

可以看到聚类效果还是不错的。

但是以上实现的K-Means聚类算法有时候效果就不是很好,例如,将上述圆的位置移到圆心为(1, 1, -3)处时,得到的效果却是这样的:

基于PCL库对三维空间点的K-Means聚类算法的实现_第3张图片

在这几天在工作中也碰到了K-Means聚类效果不太好的情况,点云为某教学楼前的一个环形路面,聚类之前的空间三维点分布情况如图所示:

基于PCL库对三维空间点的K-Means聚类算法的实现_第4张图片

选取K = 10后,聚类后的效果如下所示:

基于PCL库对三维空间点的K-Means聚类算法的实现_第5张图片

可以看到效果与期望值相差的有些离谱。

从以上两个例子中可以看到效果不太好的原因就是期望的一类A所形成的体积较大,且A类边缘点到中心的距离较大,如果其中A类的旁边(距离较近)存在另一类B且B类的体积较小,那么期望的一类A将会被分割,造成效果不好。

总之,对于具体的数据,我们要选取恰当的方法来聚类。


文章参考于:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html

你可能感兴趣的:(数据结构与算法,PCL)