泰坦尼克号船员获救数据分析

一、概述

 本文分析了泰坦尼克号船员获救的数据集合。数据集包括船员的一些信息(年龄、船舱等级、名字等等)和 是否获救的数据

     数据解释


  • PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

  • 游客ID 是否被救 船舱等级 名字 性别 年龄 兄弟姐妹数 老人孩子数 票编号 票价 座位号 哪个站登船的


注意:兄弟姐妹数、老人孩子数都是指的是在该船上的统计量

二、流程

1. 使用线性回归构建预测模型
2. 使用逻辑回归构建预测模型
3. 使用决策树构建
4. 使用随机森林
5. 使用集成算法(Ensemble learning)中的聚合多个模型(本文中使用的是随机森林和逻辑回归算法)构建的集合算法模型

三、效果

从上到下,效果呈现出上升趋势

1. 数据导入和预处理


import pandas #ipython notebook
titanic = pandas.read_csv("titanic_train.csv")
titanic.head(5)
print (titanic.describe())
       PassengerId    Survived      Pclass         Age       SibSp  \
count   891.000000  891.000000  891.000000  714.000000  891.000000   
mean    446.000000    0.383838    2.308642   29.699118    0.523008   
std     257.353842    0.486592    0.836071   14.526497    1.102743   
min       1.000000    0.000000    1.000000    0.420000    0.000000   
25%     223.500000    0.000000    2.000000   20.125000    0.000000   
50%     446.000000    0.000000    3.000000   28.000000    0.000000   
75%     668.500000    1.000000    3.000000   38.000000    1.000000   
max     891.000000    1.000000    3.000000   80.000000    8.000000   

            Parch        Fare  
count  891.000000  891.000000  
mean     0.381594   32.204208  
std      0.806057   49.693429  
min      0.000000    0.000000  
25%      0.000000    7.910400  
50%      0.000000   14.454200  
75%      0.000000   31.000000  
max      6.000000  512.329200  
titanic.iloc[19:30]
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
19 20 1 3 Masselmani, Mrs. Fatima female NaN 0 0 2649 7.2250 NaN C
20 21 0 2 Fynney, Mr. Joseph J male 35.0 0 0 239865 26.0000 NaN S
21 22 1 2 Beesley, Mr. Lawrence male 34.0 0 0 248698 13.0000 D56 S
22 23 1 3 McGowan, Miss. Anna "Annie" female 15.0 0 0 330923 8.0292 NaN Q
23 24 1 1 Sloper, Mr. William Thompson male 28.0 0 0 113788 35.5000 A6 S
24 25 0 3 Palsson, Miss. Torborg Danira female 8.0 3 1 349909 21.0750 NaN S
25 26 1 3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia... female 38.0 1 5 347077 31.3875 NaN S
26 27 0 3 Emir, Mr. Farred Chehab male NaN 0 0 2631 7.2250 NaN C
27 28 0 1 Fortune, Mr. Charles Alexander male 19.0 3 2 19950 263.0000 C23 C25 C27 S
28 29 1 3 O'Dwyer, Miss. Ellen "Nellie" female NaN 0 0 330959 7.8792 NaN Q
29 30 0 3 Todoroff, Mr. Lalio male NaN 0 0 349216 7.8958 NaN S
amount_Age_NaN = len(titanic.loc[titanic["Age"].isnull().values,:])
print("Age字段缺失值的个数:",amount_Age_NaN)
Age字段缺失值的个数: 177

1.1 从上表原始数据集中可以看到:对于Age列,有177个年龄值缺失(缺失显示为NaN),需要用fillna函数填充缺失值,这里使用中位数(median)填充

titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median())
print(titanic.describe())
       PassengerId    Survived      Pclass         Age       SibSp  \
count   891.000000  891.000000  891.000000  891.000000  891.000000   
mean    446.000000    0.383838    2.308642   29.361582    0.523008   
std     257.353842    0.486592    0.836071   13.019697    1.102743   
min       1.000000    0.000000    1.000000    0.420000    0.000000   
25%     223.500000    0.000000    2.000000   22.000000    0.000000   
50%     446.000000    0.000000    3.000000   28.000000    0.000000   
75%     668.500000    1.000000    3.000000   35.000000    1.000000   
max     891.000000    1.000000    3.000000   80.000000    8.000000   

            Parch        Fare  
count  891.000000  891.000000  
mean     0.381594   32.204208  
std      0.806057   49.693429  
min      0.000000    0.000000  
25%      0.000000    7.910400  
50%      0.000000   14.454200  
75%      0.000000   31.000000  
max      6.000000  512.329200  

1.2 查看某一列属性值有多少种类,并将对应的字符串映射成数字

print(titanic["Sex"].unique())

# Replace all the occurences of male with the number 0.
titanic.loc[titanic["Sex"] == "male", "Sex"] = 0
titanic.loc[titanic["Sex"] == "female", "Sex"] = 1

['male' 'female']
print(titanic["Embarked"].unique())
titanic["Embarked"] = titanic["Embarked"].fillna('S')
titanic.loc[titanic["Embarked"] == "S", "Embarked"] = 0
titanic.loc[titanic["Embarked"] == "C", "Embarked"] = 1
titanic.loc[titanic["Embarked"] == "Q", "Embarked"] = 2
['S' 'C' 'Q' nan]

2. 训练模型


2.1 使用线性回归模型构建分类器

# Import the linear regression class
from sklearn.linear_model import LinearRegression
# Sklearn also has a helper that makes it easy to do cross validation 
from sklearn.model_selection import KFold  # KFold已经移到了model_selection 模块
# The columns we'll use to predict the target
predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]

# Initialize our algorithm class
alg = LinearRegression()
# Generate cross validation folds for the titanic dataset.  It return the row indices corresponding to train and test.
# We set random_state to ensure we get the same splits every time we run this.
kf = KFold(n_splits=3, random_state=1)

predictions = []
accuracy = []
test_idices = []
# kf.split 会将数据分为n_splits份并返回训练和测试集数据对应的索引,而不是数据本身
# 注意,当Kfold的参数shuffle == false 时,生成的 test值从0开始,例如0,1,2,3.....len(数据集)
for train, test in kf.split(titanic):
    # The predictors we're using the train the algorithm.  Note how we only take the rows in the train folds.
    train_predictors = (titanic[predictors].iloc[train,:])
    # The target we're using to train the algorithm.
    train_target = titanic["Survived"].iloc[train]
    # Training the algorithm using the predictors and target.
    alg.fit(train_predictors, train_target)
    # We can now make predictions on the test fold
    test_predictions = alg.predict(titanic[predictors].iloc[test,:])
    predictions.append(test_predictions)
    test_idices.append(test)

注意:此时predictions是一个list,里面有三个ndarray,因为交叉验证做了n_splits=3 次


下面的例子表明。Fold函数在当参数Shuffle == False时,生成的test 从 0 依次开始

test_idices
[array([  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,
         13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,
         26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,
         39,  40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,
         52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,
         65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,
         78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,
         91,  92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103,
        104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
        117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
        130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
        143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
        156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
        169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,
        182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
        195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
        208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
        221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
        234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
        247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
        260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
        273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
        286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296]),
 array([297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309,
        310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322,
        323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335,
        336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348,
        349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361,
        362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374,
        375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
        388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400,
        401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,
        414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426,
        427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,
        440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452,
        453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465,
        466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478,
        479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491,
        492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504,
        505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517,
        518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530,
        531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543,
        544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556,
        557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569,
        570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582,
        583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593]),
 array([594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606,
        607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619,
        620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632,
        633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645,
        646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658,
        659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671,
        672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684,
        685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697,
        698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710,
        711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723,
        724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736,
        737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749,
        750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762,
        763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775,
        776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788,
        789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801,
        802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814,
        815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827,
        828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840,
        841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853,
        854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866,
        867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879,
        880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890])]
import numpy as np

# The predictions are in three separate numpy arrays.  Concatenate them into one.  
# We concatenate them on axis 0, as they only have one axis.
predictions = np.concatenate((predictions[0],predictions[1],predictions[2]), axis=0)
test_idices = np.concatenate((test_idices[0],test_idices[1],test_idices[2]),axis=0)

# Map predictions to outcomes (only possible outcomes are 1 and 0)
predictions[predictions > .5] = 1   #代表预测
predictions[predictions <=.5] = 0


# accuracy = len(predictions[predictions == titanic["Survived"].iloc[test_idices].values]) / len(predictions)
#应为predict是针对索引0,1,2.依次比较的结果,所以有等价写法
accuracy = len(predictions[predictions == titanic["Survived"].values]) / len(predictions)

print(accuracy)
0.7833894500561167

2.2 使用逻辑回归模型(Logistics Regress其实是分类器模型,名字有点混淆)构建分类器


from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
# Initialize our algorithm
alg = LogisticRegression(random_state=1,solver='liblinear')
# Compute the accuracy score for all the cross validation folds.  (much simpler than what we did before!)
scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=3)
# Take the mean of the scores (because we have one for each fold)

print(scores.mean())
0.7878787878787877
2.2.1 重新导入数据训练
titanic_test = pandas.read_csv("test.csv")
titanic_test["Age"] = titanic_test["Age"].fillna(titanic["Age"].median())
titanic_test["Fare"] = titanic_test["Fare"].fillna(titanic_test["Fare"].median())
titanic_test.loc[titanic_test["Sex"] == "male", "Sex"] = 0 
titanic_test.loc[titanic_test["Sex"] == "female", "Sex"] = 1
titanic_test["Embarked"] = titanic_test["Embarked"].fillna("S")

titanic_test.loc[titanic_test["Embarked"] == "S", "Embarked"] = 0
titanic_test.loc[titanic_test["Embarked"] == "C", "Embarked"] = 1
titanic_test.loc[titanic_test["Embarked"] == "Q", "Embarked"] = 2
from sklearn.model_selection import KFold,cross_val_score
from sklearn.ensemble import RandomForestClassifier

predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]

# Initialize our algorithm with the default paramters
# n_estimators is the number of trees we want to make
# min_samples_split is the minimum number of rows we need to make a split
# min_samples_leaf is the minimum number of samples we can have at the place where a tree branch ends (the bottom points of the tree)
alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2, min_samples_leaf=1)
# Compute the accuracy score for all the cross validation folds.  (much simpler than what we did before!)
#kf = model_selection.KFold(titanic.shape[0], n_folds=3, random_state=1)
kf = KFold(n_splits=5,random_state=2)
scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=kf)

# Take the mean of the scores (because we have one for each fold)
print(scores.mean())
0.8013935095097608
alg = RandomForestClassifier(random_state=1, n_estimators=100, min_samples_split=4, min_samples_leaf=2)
# Compute the accuracy score for all the cross validation folds.  (much simpler than what we did before!)
kf = KFold( 3, random_state=1)
scores = cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=kf)

# Take the mean of the scores (because we have one for each fold)
print(scores.mean())
0.8148148148148148
# Generating a familysize column
titanic["FamilySize"] = titanic["SibSp"] + titanic["Parch"]

# The .apply method generates a new series
# lambda arg1,arg2,.....argn:expression
titanic["NameLength"] = titanic["Name"].apply(lambda x: len(x))
Note: 关键字lambda表示匿名函数,lambda arg1,arg2,…argn:expression
  • 冒号:之前的a,b,c表示它们是这个函数的参数
  • 匿名函数不需要return来返回值,表达式本身结果就是返回值
# 正则表达式处理模块RE
import re    

# A function to get the title from a name.
def get_title(name):
    # Use a regular expression to search for a title.  Titles always consist of capital and lowercase letters, and end with a period.
    title_search = re.search(' ([A-Za-z]+)\.', name)
    # If the title exists, extract and return it.
    if title_search:
        return title_search.group(1)
    return ""

# Get all the titles and print how often each one occurs.
titles = titanic["Name"].apply(get_title)
print(pandas.value_counts(titles))

# Map each title to an integer.  Some titles are very rare, and are compressed into the same codes as other titles.
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8, "Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2}
for k,v in title_mapping.items():
    titles[titles == k] = v

# Verify that we converted everything.
print(pandas.value_counts(titles))

# Add in the title column.
titanic["Title"] = titles
Mr          517
Miss        182
Mrs         125
Master       40
Dr            7
Rev           6
Mlle          2
Col           2
Major         2
Jonkheer      1
Lady          1
Sir           1
Capt          1
Don           1
Countess      1
Ms            1
Mme           1
Name: Name, dtype: int64
1     517
2     183
3     125
4      40
5       7
6       6
7       5
10      3
8       3
9       2
Name: Name, dtype: int64
3.1.1 在决策树模型中选择最优的特征个数,并绘制各个特征对分类影响的重要程度
import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked", "FamilySize", "Title", "NameLength"]

# Perform feature selection
selector = SelectKBest(f_classif, k=5)
selector.fit(titanic[predictors], titanic["Survived"])

# Get the raw p-values for each feature, and transform from p-values into scores
scores = -np.log10(selector.pvalues_)

# Plot the scores.  See how "Pclass", "Sex", "Title", and "Fare" are the best?
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.title("importance of features")
plt.xlabel("features")
plt.ylabel("importance")
plt.show()

# Pick only the four best features.
predictors = ["Pclass", "Sex", "Fare", "Title"]

alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=8, min_samples_leaf=4)
score = cross_val_score(alg,titanic[predictors],titanic["Survived"],cv=5)
print("预测的得分值: " ,score.mean())

泰坦尼克号船员获救数据分析_第1张图片

预测的得分值:  0.8193563556396282

3. 使用集成算法求解

from sklearn.ensemble import GradientBoostingClassifier
import numpy as np

# The algorithms we want to ensemble.
# We're using the more linear predictors for the logistic regression, and everything with the gradient boosting classifier.
algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), ["Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title",]],
    [LogisticRegression(random_state=1,solver='liblinear'), ["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]]
]

# Initialize the cross validation folds
kf = KFold(n_splits=3, random_state=1)

predictions = []
for train, test in kf.split(titanic):
    train_target = titanic["Survived"].iloc[train]
    full_test_predictions = []
    # Make predictions for each algorithm on each fold
    for alg, predictors in algorithms:
        # Fit the algorithm on the training data.
        alg.fit(titanic[predictors].iloc[train,:], train_target)
        # Select and predict on the test fold.  
        # The .astype(float) is necessary to convert the dataframe to all floats and avoid an sklearn error.
        test_predictions = alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]
        full_test_predictions.append(test_predictions)
    # Use a simple ensembling scheme -- just average the predictions to get the final classification.
    test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2
    # Any value over .5 is assumed to be a 1 prediction, and below .5 is a 0 prediction.
    test_predictions[test_predictions <= .5] = 0
    test_predictions[test_predictions > .5] = 1
    predictions.append(test_predictions)

# Put all the predictions together into one array.
predictions = np.concatenate(predictions, axis=0)

# Compute accuracy by comparing to the training data.
accuracy = len(predictions[predictions == titanic["Survived"]]) / len(predictions)
print('模型精确度:',accuracy)

模型精确度: 0.8215488215488216
titles = titanic_test["Name"].apply(get_title)
# We're adding the Dona title to the mapping, because it's in the test set, but not the training set
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8, "Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2, "Dona": 10}
for k,v in title_mapping.items():
    titles[titles == k] = v
titanic_test["Title"] = titles
# Check the counts of each unique title.
print(pandas.value_counts(titanic_test["Title"].values))

# Now, we add the family size column.
titanic_test["FamilySize"] = titanic_test["SibSp"] + titanic_test["Parch"]


1     240
2      79
3      72
4      21
7       2
6       2
10      1
5       1
dtype: int64
3.2构建集成算法,对一个未知结果的数据集进行预测
predictors = ["Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title"]

algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), predictors],
    [LogisticRegression(random_state=1,solver='liblinear'), ["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]]
]

full_predictions = []
for alg, predictors in algorithms:
    # Fit the algorithm using the full training data.
    alg.fit(titanic[predictors], titanic["Survived"])
    # Predict using the test dataset.  We have to convert all the columns to floats to avoid an error.
    predictions = alg.predict_proba(titanic_test[predictors].astype(float))[:,1]
    full_predictions.append(predictions)

# The gradient boosting classifier generates better predictions, so we weight it higher.
predictions = (full_predictions[0] * 3 + full_predictions[1]) / 4
predictions[predictions > .5] = 1 
predictions[predictions <= .5] = 0

predictions

array([0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,
       0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0.,
       0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0.,
       0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0.,
       0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0.,
       0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0.,
       0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 0.,
       1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0.,
       0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
       0., 0., 0., 1., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1.,
       0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1.,
       0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1.,
       0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1.,
       0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
       1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
       0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
       1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.,
       0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
       0., 1., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1.,
       0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0.,
       1., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0.,
       1., 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
       1., 1., 1., 1., 1., 0., 1., 0., 0., 0.])

你可能感兴趣的:(逻辑回归)