# coding: utf-8
import numpy as np
import random
# ----------------------PSO参数设置---------------------------------
class PSO():
def __init__(self, pN, dim, max_iter): # 初始化类 设置粒子数量 位置信息维度 最大迭代次数
self.w = 1
self.ws = 0.95
self.we = 0.4
self.c1 = 1.8
self.c2 = 1.8
self.r1 = 0.6
self.r2 = 0.4
self.pN = pN # 粒子数量
self.dim = dim # 搜索维度
self.max_iter = max_iter # 迭代次数
self.X = np.zeros((self.pN, self.dim)) # 所有粒子的位置(还要确定取值范围)
self.Xmax = 100
self.Xmin = -100
self.V = np.zeros((self.pN, self.dim)) # 所有粒子的速度(还要确定取值范围)
self.Vmax = 2
self.Vmin = -2
self.pbest = np.zeros((self.pN, self.dim)) # 个体经历的最佳位置
self.gbest = np.zeros((1, self.dim)) # 全局最佳位置
self.p_fit = np.zeros(self.pN) # 每个个体的历史最佳适应值
self.fit = 0.001 # 全局最佳适应值
# ---------------------目标函数Sphere函数-----------------------------
def function(self, x):
y = 0
for i in range(self.dim):
y = y + x[i]**2
return y
# ---------------------初始化种群----------------------------------
def init_Population(self):
for i in range(self.pN): # 遍历所有粒子
for j in range(self.dim): # 每一个粒子的纬度
self.X[i][j] = random.uniform(-100, 100) # 给每一个粒子的位置赋一个初始随机值(在一定范围内)
self.V[i][j] = random.uniform(-0.2, 0.2) # 给每一个粒子的速度给一个初始随机值(在一定范围内)
self.pbest[i] = self.X[i] # 把当前粒子位置作为这个粒子的最优位置
tmp = self.function(self.X[i]) # 计算这个粒子的适应度值
self.p_fit[i] = tmp # 当前粒子的适应度值作为个体最优值
if (tmp > self.fit): # 与当前全局最优值做比较并选取更佳的全局最优值
self.fit = tmp
self.gbest = self.X[i]
# ---------------------更新粒子位置----------------------------------
def iterator(self):
fitness = []
for t in range(self.max_iter):
#w = self.ws - (self.ws - self.we) * (t / self.max_iter)
for i in range(self.pN):
# 更新速度
self.V[i] = self.w * self.V[i] + self.c1 * random.uniform(0,1) * (self.pbest[i] - self.X[i]) + (self.c2 * random.uniform(0,1) * (
self.gbest - self.X[i]))
for j in range(self.dim):
if self.V[i][j] > self.Vmax:
self.V[i][j] = self.Vmax
elif self.V[i][j] < self.Vmin:
self.V[i][j] = self.Vmin
# 更新位置
self.X[i] = self.X[i] + self.V[i]
for j in range(self.dim):
if self.X[i][j] > self.Xmax:
self.X[i][j] = self.Xmax
elif self.X[i][j] < self.Xmin:
self.X[i][j] = self.Xmin
for i in range(self.pN): # 更新gbest\pbest
temp = self.function(self.X[i])
if (temp > self.p_fit[i]): # 更新个体最优
self.pbest[i] = self.X[i]
self.p_fit[i] = temp
if (temp > self.fit): # 更新全局最优
self.gbest = self.X[i]
self.fit = temp
fitness.append(self.fit)
print('最优值为:', self.fit) # 输出最优值
return fitness
# ----------------------程序执行-----------------------
my_pso = PSO(pN=30, dim=20, max_iter=500)
my_pso.init_Population()
my_pso.iterator()
参考https://www.omegaxyz.com/2018/01/12/python_pso/