- 机器视觉在OCR(字符识别)检测中的应用
目前,对印刷品的检测工作一般采用人工方法进行质量检测,然后再由工作人员将成品和次品进行分类堆放。这样一来,不仅增加了工作人员的劳动强度,而且检测质量也难以得到保障。其次,则是效率低下,浪费时间成本。印品质量自动检测系统满足印刷企业对于产品质量控制的需求。系统采用自主研发的表面缺陷检测、色彩测量、快速建模等核心算法,广泛适用于包装印刷、标签印刷、商业印刷质量在线检测和印后终检。机器视觉用于印刷、包装
- 2025年人工智能、虚拟现实与交互设计国际学术会议
学术小八
学术人工智能vr交互
重要信息官网:www.aivrid.com时间:2025年10月17-19日地点:中国-东莞部分介绍征稿主题包括但不限于:生物特征模式识别机器视觉专家系统深度学习智能搜索自动编程智能控制智能机器人系统组件虚拟现实平台用于VR/AR的AI平台数据和生成、操作、分析和验证浸入式环境和虚拟世界的生成优化和现实的渲染人工智能与用户体验个性化推荐系统情感计算与用户响应虚拟现实与沉浸式技术沉浸式环境设计交互设
- 机器视觉通用平台之拟合圆工具类
小治视觉
算法visualstudioc#
usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Runtime.InteropServices;usingSystem.Text;usingSystem.Threading.Tasks;usingCvBase;usingSystem.IO;usingSystem.Drawing.Drawing2D;u
- 内嵌式触摸显示器在工业视觉设备中的应用
Jwest2021
计算机外设
内嵌式触摸显示器在工业视觉设备中的应用日益广泛,其重要性不容忽视。以下是对内嵌式触摸显示器在工业视觉设备中应用的具体分析:一、应用背景工业视觉设备是智能制造的重要组成部分,它依赖于先进的图像处理和机器视觉技术,实现对生产线上产品质量的自动化检测和控制。随着工业4.0和智能制造的推进,工业视觉设备在生产线上的作用愈发关键。而内嵌式触摸显示器作为人机交互的重要界面,为工业视觉设备提供了直观、便捷的操作
- 如何为工业相机匹配最佳镜头
51camera
机器视觉产品资料查询平台工业相机工业镜头工业相机
工业镜头选型为什么重要?工业镜头与普通相机镜头不同,它的核心任务是满足高精度、稳定性、环境适应性等严苛需求。选型不当可能导致:成像模糊:影响缺陷检测或尺寸测量精度;成本浪费:高价镜头无法适配实际场景;系统卡顿:镜头与相机、光源不匹配,拖慢处理速度。选型要精准匹配需求。在工业自动化、机器视觉、智能检测等领域,工业镜头作为工业相机的“眼睛”起着重要作用,选择合适的镜头才能让成像更精准、高效。那么如
- 看不见的光,看得见的细节:短波红外工业相机的神秘力量!
51camera
工业相机短波红外相机
随着市场需求的挖掘和机器视觉技术的发展,短波红外工业相机在工业、医疗、食品等领域的应用越来越广泛。其中半导体检测和食品检测是两大主要应用市场,占据较大的市场份额。今天我们来看看短波红外相机。短波红外(Short-WaveInfrared简称SWIR,通常指0.9~1.7μm波长的光线)是一种比可见光波长更长的光。这些光不能通过“肉眼”看到,也不能用“普通相机”检测到。由于被检测物体的材料特性,一些
- 机器视觉通用平台之拟合直线工具类
小治视觉
c#算法visualstudio视觉检测
usingSystem;usingSystem.Collections.Generic;usingSystem.IO;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;usingCvBase;usingCWindowTool;usingHalconDotNet;namespaceCvImageTool{publicclass
- 机器视觉OpenCV:OpenCV图像基本操作
数字化与智能化
机器学习之机器视觉opencv人工智能计算机视觉
一、图像读写操作(一)读取图像方法:cv2.imread(filename,flags=None)参数说明:filename(字符串):-必须参数。-指定要读取的图像文件的路径。可以是相对路径或绝对路径。-支持多种图像格式,如.jpg,.png,.bmp,.tiff,.jpeg等。flags(整数):-可选参数。-指定读取图像的方式。不同的标志位会影响图像的加载方式。-常见的标志位包括:-cv2.
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- 圆柱电池自动分选机:电池生产线的智能守护者
b***2511
大数据人工智能
在新能源产业的浪潮中,圆柱电池作为电动汽车、储能系统及各类便携式电子设备的核心能量单元,其性能与质量的优化成为了行业发展的关键。随着技术的不断进步和市场的日益成熟,圆柱电池的生产效率与品质要求也越来越高。而圆柱电池自动分选机,作为电池生产线上的关键设备,正以其高效、精准、智能的特点,成为提升电池生产效率与品质的重要力量。一、圆柱电池自动分选机的工作原理圆柱电池自动分选机主要利用先进的机器视觉技术和
- 机器视觉:ransac算法详解
无水先生
数字图形和图像处理算法计算机视觉
目录一、说明:二、算法步骤三、算法代码四、其它补充一、说明:RANSAC是一种常用的参数估计方法,全称为RandomSampleConsensus(随机抽样一致性)。它通过随机选择数据中的一部分,然后根据这些数据拟合模型,统计模型与其他数据的偏差,最终筛选出符合一定阈值的数据,用于估计参数。RANSAC可以应用于很多领域,如计算机视觉、机器人和地理信息系统等。其优点在于对噪声数据和异常值有很强的鲁
- Halcon 初步了解
科学的发展-只不过是读大自然写的代码
图形编程c#视觉处理Halcon
1.Halcon概述Halcon是德国MVTec公司开发的一套完善的机器视觉算法包,也是一款功能强大的视觉处理软件,为工业自动化领域提供了全面的解决方案。它拥有应用广泛的机器视觉集成开发环境,提供了一套丰富的图像处理和机器视觉算法,可以在各种工业应用中进行图像分析、目标检测、测量、定位、识别等任务。Halcon的核心功能包括图像处理、特征提取与匹配、3D视觉、深度学习、条码识别、OCR识别以及视觉
- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- 【C# + HALCON 机器视觉】机器视觉在汽车内饰板塑料部件装配中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#HALCON机器视觉汽车零部件装配内饰装配形状匹配人机交互
摘要:本文聚焦C#与HALCON技术在汽车内饰板塑料部件自动化装配领域的深度应用,详细阐述基于形状匹配算法的视觉定位技术、C#开发的人机交互界面及设备通信集成方案。通过完整的实操流程和代码示例,展示如何解决传统人工装配精度不稳定的问题,实现装配效率提升35%、良品率从92%提升至98%的显著成效,为汽车制造行业自动化升级提供技术参考。文章目录【C#+HALCON机器视觉】机器视觉在汽车内饰板塑料部
- LabVIEW工业指针仪表检测
LabVIEW开发
LabVIEW开发案例labview深度学习LabVIEW开发案例
用LabVIEW融合深度学习与机器视觉技术,构建适用于复杂工业环境的多类指针式仪表自动检测系统。通过集成品牌硬件与优化算法架构,实现仪表实时定位、图像增强、示数读取全流程自动化,解决传统人工巡检效率低、误差大的问题,满足煤矿、变电站等场景的智能化监测需求。应用场景工业设备监控:煤矿通风设备压力表、变电站电压电流表、集气站流量仪表等圆形指针式设备的实时状态监测。恶劣环境检测:适用于高温、高压、粉尘或
- 2025——》机器视觉之opencv/图片和视频的加载和显示基本知识详解
下面我将详细介绍OpenCV中图片和视频加载与显示的基本知识。一、OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个广泛用于计算机视觉任务的开源库,支持多种编程语言(如Python、C++),提供了丰富的图像处理和计算机视觉算法。二、图片操作基础1.图片的加载pythonimportcv2#加载图片image=cv2.imread('example
- 机器视觉工程师如何进行图像去噪和增强
zhangzhechun_02
运维深度学习人工智能机器人自动化
python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位C#视觉应用开发问题系列c#串口应用开发问题系列microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析
- 机器视觉工程师如何进行条码与二维码识别优化
zhangzhechun_02
自动化运维深度学习人工智能机器人
python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位C#视觉应用开发问题系列c#串口应用开发问题系列microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析
- 使用Halcon进行图像预处理的策略
AI_Guru人工智能
计算机视觉图像处理人工智能
图像预处理是机器视觉系统中的一个关键步骤,它有助于提高图像质量,从而使得后续的图像分析和特征提取更加准确。在Halcon中,图像预处理通常包括滤波、对比度增强、归一化、边缘增强等操作。以下是一些使用Halcon进行图像预处理的策略,以及相应的示例代码。图像预处理策略滤波:去除图像噪声,如高斯滤波、中值滤波等。对比度增强:提高图像的对比度,如直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)。
- Halcon 图像预处理算子
、。纯牛奶最单纯* ̄▽ ̄*
计算机视觉人工智能图像处理
在机器视觉领域,图像的预处理算法十分重要。对于一些成像质量较差,受噪声影响较大的场景中,为保证视觉测量,定位,检测效果的稳定性。、往往第一步就是对图像做处理,这里对常用的预处理算法做总结。*腐蚀图像增加暗部,减少亮部gray_erosion_rect(Image,ImageMin,11,11)*膨胀图像增加增加,减少暗部gray_dilation_rect(Image,ImageMax,11,11
- 图像基础算法学习笔记
jerry201108
视觉基础知识学习笔记计算机视觉
目录概要一、图像采集二、图像标注四、图像几何变换五、图像边缘检测Sobel算子Scharrt算子Laplacian算子Canny边缘检测六、形态学转换十三、图像去噪概要参考书籍:《机器视觉与人工智能应用开发技术》廖建尚,钟君柳出版时间:2024-02-01图像采集图像标注:绘制直线、矩阵、圆形、椭圆和多边形图像灰度转换:灰度化、二值化等图像转换方法图像几何变换:图像旋转、图像镜像、图像缩放、图像透
- 探索大规模实例分割新天地 —— LVIS API深度解析与应用推广
芮奕滢Kirby
探索大规模实例分割新天地——LVISAPI深度解析与应用推广去发现同类优质开源项目:https://gitcode.com/在机器视觉领域,数据集的丰富性和多样性是推动技术进步的关键。LVIS(LargeVocabularyInstanceSegmentation),以其独特的名字和深远的意义,在实例分割界掀起了一场革新风暴。LVIS,这个名字发音为“el-vis”,不仅仅是一个数据集,更是一套强
- 受大脑启发的人工智能在令人震惊的视觉突破中学会像人类一样看东西
大咖分享课
人工智能
一种名为Lp-Convolution的新型受大脑启发的AI方法通过动态重塑CNN过滤器来增强图像识别能力,将生物现实性与改进的性能和效率相结合。IBS-Yonsei研究团队在ICLR2025上介绍了一种新颖的Lp-Convolution方法。延世大学基础科学研究所(IBS)和马克斯·普朗克研究所的研究团队开发了一种新的人工智能(AI)技术,使机器视觉更接近人脑处理视觉信息的方式。这种被称为Lp-C
- 机器视觉开发-使用yolo训练和验证自己的模型
派葛穆
YOLO深度学习机器学习
创建一个文件夹,包含如下子目录,images存放训练(train)和验证图片(val),一般是8:2的数量比例,labels存放对应的yolo格式内容的标注文件(与图片同名.txt)。创建一个.yaml格式的配置文件,如Goods.yamlpath:D:\Desktop\Python文件\仿真单件分离系统\Goods#数据集根路径train:images/train#训练集路径val:images
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- 基于机器视觉的水果分拣系统-分拣终端设计(源码+万字报告+讲解)
炳烛之明科技
人工智能
目录摘要1Abstract1第1章绪论21.1课题研究背景与意义21.2水果分拣系统研究现状31.3水果分拣系统应用前景4第2章系统设计方案42.1水果分拣终端总体框图42.2系统研究内容及设计要求52.3方案整体设计5第3章系统硬件电路设计63.1总体硬件框图63.2主控芯片及其最小系统73.3直流电机及其驱动73.4机械臂设计83.5WiFi模块8第4章系统软件设计84.1总体软件设计框图84
- HALCON 深度学习训练 3D 图像的几种方式优缺点
LeonDL168
Halcon深度学习3d人工智能HALCON训练3D图像深度学习训练3D图像HALCONpython
HALCON深度学习训练3D图像的几种方式优缺点**在计算机视觉和工业检测等领域,3D图像数据的处理和分析变得越来越重要,HALCON作为一款强大的机器视觉软件,提供了多种深度学习训练3D图像的方式。每种方式都有其独特的设计思路和应用场景,了解它们的优缺点有助于根据具体需求选择最合适的训练方法。基于体素化的训练方式优点数据结构规整:体素化将3D图像转换为类似3D网格的数据结构,这种规整的数据形式能
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,