- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- 基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
深度学习乐园
深度学习实战项目迁移学习分类人工智能
完整源码项目包获取→点击文章末尾名片!番石榴病害数据集背景描述番石榴(Psidiumguajava)是南亚的主要作物,尤其是在孟加拉国。它富含维生素C和纤维,支持区域经济和营养。不幸的是,番石榴生产受到降低产量的疾病的威胁。该数据集旨在帮助开发用于番石榴果实早期病害检测的机器学习模型,帮助保护收成并减少经济损失。数据说明该数据集包括473张番石榴果实的注释图像,分为三类。图像经过预处理步骤,例如钝
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- VLLM:虚拟大型语言模型(Virtual Large Language Model)
大霸王龙
语言模型人工智能自然语言处理
VLLM:虚拟大型语言模型(VirtualLargeLanguageModel)VLLM指的是一种基于云计算的大型语言模型的虚拟实现。它通常是指那些由多个服务器组成的分布式计算环境中的复杂机器学习模型,这些模型能够处理和理解大量的文本数据。VLLM的核心是“大型语言模型”,这是一种通过深度神经网络训练的算法,能够在理解和生成人类语言方面表现出极高的能力。解释:虚拟:意味着这个模型不是在单个物理设备
- 6.26打卡
丁值心
机器学习小白从0到1人工智能深度学习机器学习python开发语言
@浙大疏锦行DAY55序列预测任务介绍知识点回顾1.序列预测介绍a.单步预测b.多步预测的2种方式2.序列数据的处理:滑动窗口3.多输入多输出任务的思路4.经典机器学习在序列任务上的劣势;以随机森林为例作业:手动构造类似的数据集(如cosx数据),观察不同的机器学习模型的差异#准备工作importnumpyasnpimportrandomimportosimportmatplotlib.pyplo
- Python学习Day10
m0_64472246
python打卡学习python
学习来源:@浙大疏锦行知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估对心脏病数据集采用机器学习模型建模和评估importpandasaspdfile_path="heart.csv"data=pd.read_csv(file_path)data.info()data.isnull().sum()#划分训练集和测试机fromsklearn.model_selectionim
- Python学习Day14
m0_64472246
python学习开发语言
学习来源:@浙大疏锦行SHAP(SHapleyAdditiveexPlanations)库是一个用于解释机器学习模型预测结果的开源Python库。**一、核心概念**1.**Shapley值***它来源于合作博弈论。在机器学习模型解释的语境下,可以这样理解:对于一个模型的预测结果,每个特征都看作是一个“玩家”,模型的输出是这些“玩家”合作的结果。Shapley值表示每个特征对预测结果的平均边际贡献
- 一[3.0]、 yolov8 工作原理
他人是一面镜子,保持谦虚的态度
车道检测研究YOLO
目录YOLOv8简介什么是YOLOv8?yaml配置文件解析YOLOv8架构图Yolov8有什么新功能?YOLO模型彻底改变了计算机视觉领域。识别物体是计算机视觉中的一项关键任务,可应用于机器人、医学成像、监控系统和自动驾驶汽车等多个领域。YOLO模型的最新版本YOLOv8是一种先进的实时物体检测框架,引起了研究界的关注。在所有流行的物体识别机器学习模型(如FasterR-CNN、SSD和Reti
- Python与MediaPipe实现实时手势数字识别项目源码
盛艺小豆丁
本文还有配套的精品资源,点击获取简介:本项目基于Python语言,利用MediaPipe框架实现手势数字识别。MediaPipe提供多种计算机视觉解决方案,项目中重点应用手部追踪功能。通过收集手势数据、提取特征、选择模型、训练及优化,实现从视频流中实时识别手势并将其转换为数字的功能。项目包含数据收集、机器学习模型训练、实时应用等关键步骤,以及readme、HandTrackingModule、ma
- 使用Python进行大模型的测试与部署
AI技术老狗(QA)
python开发语言大模型测试部署
随着人工智能技术的飞速发展,大规模模型在各行各业的应用日益广泛。然而,如何有效测试这些模型以确保其稳定性和准确性,成为测试人员的们面临的一大挑战。本文将详细介绍在Python环境下,如何测试大模型,并探讨其部署策略。一、理解大模型测试的重要性大模型由于参数众多、计算复杂度高,其测试过程比传统机器学习模型更为复杂。有效的测试能够:验证模型在不同场景下的表现。识别潜在的过拟合或欠拟合问题。确保模型在生
- python训练day14 shap图绘制
小暖星
python训练python开发语言人工智能
SHAP原理目标:理解复杂机器学习模型(尤其是“黑箱”模型,如随机森林、梯度提升树、神经网络等)为什么会对特定输入做出特定预测。SHAP提供了一种统一的方法来解释模型的输出。核心思想:合作博弈论中的Shapley值SHAP(SHapleyAdditiveexPlanations)的核心基于博弈论中的Shapley值概念。想象一个合作游戏:1.玩家(Players)::模型的特征(Features)
- Python商务数据分析——Python 入门基础知识学习笔记
爱吃代码的小皇冠
python笔记算法数据结构
一、简介1.1Python特性解释型语言:代码无需编译可直接运行,适合快速开发。动态类型:变量类型在运行时确定(如x=1后x="str"仍合法)。面向对象:支持类、对象、继承等特性,代码可复用性强。语法简洁:通过缩进区分代码块,减少括号等冗余符号。1.2应用场景数据分析:Pandas、Numpy等库处理结构化数据。人工智能:TensorFlow、PyTorch构建机器学习模型。Web开发:Djan
- 模型集成:提升机器学习模型性能的有效策略及实践
t0_54program
大数据与人工智能机器学习人工智能个人开发
在机器学习领域,模型集成是一种常见且有效的方法,它旨在提高模型的性能和泛化能力。简单来说,模型集成就是通过多种方式将多个模型组合起来,以提升对单个问题的处理表现。模型集成的优势模型集成具备诸多优点,它能够增强机器学习模型在未知数据上的性能、鲁棒性和泛化能力。以基于树的算法为例,它们擅长利用多棵树的集成来提升整体性能,在某些特定任务中表现出色。而对于神经网络模型,虽然在一般情况下,单个模型足以刻画特
- Streamlit 笔记
成都犀牛
python笔记python
Streamlit是一个开源的Python库,用于快速构建和共享数据应用程序。它可以让开发者用简洁的代码将机器学习模型、数据可视化、分析工具等快速构建为交互式的Web应用。Streamlit的特点简单易用:使用Python编写即可构建功能强大的Web应用。实时更新:Streamlit应用会随着代码的修改自动更新,无需手动刷新浏览器。支持丰富的组件:包括表单、按钮、文本框、图表、图片等多种交互组件。
- 机器学习模型评估:ROC曲线
数字化与智能化
人工智能机器学习机器学习ROC曲线
一、ROC曲线讲解1、ROC概述ROC曲线(ReceiverOperatingCharacteristiccurve)是一种用于评估二分类模型性能的工具。它以假阳性率(FalsePositiveRate,FPR)为横坐标,真阳性率(TruePositiveRate,TPR)为纵坐标,绘制出的曲线。在二分类问题中,我们通常将一个类别定义为“正例”,另一个类别定义为“负例”。而模型的预测结果可以分为四
- 一眼看懂长文案:机器学习是如何生成自动摘要的?
Echo_Wish
前沿技术人工智能机器学习人工智能
一眼看懂长文案:机器学习是如何生成自动摘要的?兄弟姐妹们,大家好!我是Echo_Wish,一个热衷把复杂AI技术讲清楚、讲明白的码农写作者。今天咱聊个每个人都用得上,但可能从没想过背后逻辑的事儿——自动文本摘要。不夸张地说,这玩意儿几乎每天都在你眼前晃:新闻推送的标题提炼、公众号的摘要卡片、电商长评一句话总结、AI文档助手自动写“关键要点”……你以为是人工编辑干的,其实很多时候背后都是机器学习模型
- 初识 Tensorflow.js【Plan - June - Week 3】
kuiini
Plan人工智能tensorflow人工智能
一、TensorFlow.jsTensorFlow.js是TensorFlow的JavaScript实现,支持在浏览器或Node.js环境中训练和部署机器学习模型。1、TensorFlow.js能做什么?在浏览器中训练机器学习模型加载并使用已有的模型(TensorFlowSavedModel、Keras模型、TensorFlowHub等)在Node.js环境中训练和部署模型将模型从PythonTe
- TensorFlow 基础知识:Java开发者的入门指南
张道宁
tensorflowjavaneo4j
作为一位Java开发者,你可能已经熟悉了面向对象编程和强类型系统的世界。现在,让我们探索一下TensorFlow这个强大的机器学习框架,并了解如何将其与你的Java技能结合起来。什么是TensorFlow?TensorFlow是由GoogleBrain团队开发的开源机器学习框架。它提供了一个灵活的生态系统,用于构建和部署机器学习模型。虽然TensorFlow最初是用Python编写的,但它提供了多
- 什么是 tensorflow ?解决了什么问题?为什么需要它?没有它会出现什么问题?
微信公众号:AI创造财富
tensorflow人工智能python
什么是TensorFlow?TensorFlow是一个用于数值计算的强大开源框架,其核心是通过有向图表示计算过程,图中的节点代表数学运算,边则代表多维数组(张量)之间的数据流。它最初是为了满足Google内部的研究需求而开发的,现在已成为全球开发者构建和部署机器学习模型的重要工具。解决了什么问题?TensorFlow主要解决了深度学习实践中的以下关键问题:跨平台计算:TensorFlow支持在CP
- Python实例题:股票数据分析与预测系统
狐凄
实例python数据分析开发语言
目录Python实例题题目问题描述解题思路关键代码框架难点分析Python实例题题目股票数据分析与预测系统问题描述开发一个股票数据分析系统,实现以下功能:从公开API获取股票历史数据对数据进行清洗和特征工程实现技术指标计算(如MA、MACD、KDJ等)构建机器学习模型预测股价走势可视化展示分析结果提供交易策略建议解题思路使用requests库调用AlphaVantage或YahooFinanceA
- AI大模型的概念验证与落地
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型,深度学习,Transformer,自然语言处理,计算机视觉,概念验证,落地应用,模型训练,模型部署1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,其中,大模型作为AI领域的重要组成部分,展现出强大的学习和推理能力,在自然语言处理、计算机视觉、语音识别等领域取得了突破性进展。大模型是指参数规模庞大、训练数据海量的人工智能模型。与传统机器学习模型相比,大模型拥有更强的泛化能力和表达
- SHAP(夏普利加性解释,Shapley Additive Explanations)
阳光明媚大男孩
人工智能机器学习深度学习
揭秘机器学习模型的“黑盒”:什么是SHAP?在人工智能(AI)时代,机器学习模型被广泛应用于医疗、金融、推荐系统等众多领域。然而,这些模型往往像一个“黑盒”,让人难以理解它们是如何做出预测的。SHAP(夏普利加性解释,ShapleyAdditiveExplanations为我们提供了一把钥匙,帮助揭开模型决策的神秘面纱!这篇科普博文将带你走进SHAP的世界,了解它是什么、如何工作,以及为什么它如此
- 实现AI数据高效评估的一种方法
mao_feng
人工智能
本文提出了一种新的机器学习模型训练数据影响分析框架,称为DistilledDatamodel(DDM)。该框架通过两个阶段实现高效的数据影响评估:离线训练和在线评价。在离线训练阶段,利用反向梯度匹配技术从原始训练数据中提炼出一个紧凑的合成集(synset),用以近似表示训练数据对目标模型的影响。在线评价阶段,则通过对synset进行微调,并结合特定的模型行为评估需求,快速构建出针对不同测试样本的影
- 《Sklearn 机器学习模型--分类模型》--K-means 聚类(K-means clustering algorithm)
非门由也
机器学习数据分析机器学习sklearn分类
K-means聚类算法K-means聚类算法是一种基于划分的无监督学习算法,通过迭代优化将数据划分为指定簇数(K值),使同一簇内样本相似度最大化、簇间差异最大化34。以下从算法原理、实现步骤、应用场景及优缺点展开说明:一、核心原理与实现步骤核心原理K-均值聚类(K-MeansClustering)是一种无监督学习算法,其基本思想是将数据集划分为K个不同的簇,使得每个样本点都属于离它最近的簇中心。
- 机器学习中的数据准备关键技术
Morpheon
机器学习信息可视化人工智能
有效的数据准备对于构建强大的机器学习模型至关重要。本文档总结并阐述了为监督和非监督学习任务准备数据的关键技术。1.理解数据类型有两种数据类型。定性数据描述对象的特征,而定量数据描述对象的数量。定性(分类)数据名义:无序的命名类别(例如,性别,国家)。无法执行算术运算。使用独热编码或标签编码。有序:具有自然顺序的类别(例如,满意度:低,中,高)。通常用整数映射编码,保留顺序。定量(数值)数据区间:具
- 【知识图谱构建系列3】zero-shot的理念介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱人工智能
文章目录zero-shot用在线的大模型直接实现所谓的zero-shot提取试验参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/zero-shot“Zero-shot”的标准中文翻译是零样本或零次学习,指机器学习模型在未经特定任务数据训练的情况下直接处理该任务的能力。对于知识图谱构建而言,ze
- Chroma 向量数据库学习笔记
成都犀牛
人工智能大模型python数据库python人工智能机器学习
Chroma向量数据库学习笔记1.什么是Chroma?Chroma是一个开源的嵌入式向量数据库。它主要用于存储和检索嵌入向量,这些向量通常由大型语言模型(LLM)或其他机器学习模型生成,用于表示文本、图像或其他类型数据的语义信息。Chroma的设计目标是易于使用、轻量级、且专为LLM应用优化。核心特点:易于上手:提供了简洁的PythonAPI,可以快速集成到LLM应用中。嵌入式:默认情况下,数据存
- Hummingbird库:将机器学习模型转换为深度学习模型
萧鼎
python基础到进阶教程机器学习深度学习人工智能
引言随着深度学习在各个领域的广泛应用,研究人员和工程师开始探索如何将传统的机器学习模型(如决策树、随机森林等)转换为可以在GPU上高效运行的神经网络模型。微软推出的Hummingbird库正是为了解决这一需求,它可以将经过训练的传统机器学习模型转换为等效的深度学习模型,从而加速推理并支持跨平台部署。在本博客中,我们将深入探讨Hummingbird的原理、使用方法、适用场景,并通过实验展示其优势。第
- 8.25 常见机器学习模型的介绍
云策量化
量化软件量化入门教程量化交易量化炒股QMT量化交易入门教程程序化交易PTradedeepseek
8.25常见机器学习模型的介绍Hey,量化投资的小伙伴们!今天我们要聊的是机器学习模型,这些模型就像是我们量化投资工具箱里的瑞士军刀,多功能且强大。准备好了吗?让我们一起探索这些模型的奥秘!1.线性回归(LinearRegression)首先,让我们从最简单的模型开始——线性回归。想象一下,你有一个数据集,里面包含了房子的大小和价格。线性回归模型就像是一个魔法师,它能够找到一条直线,这条直线能够最
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam