- 吐血整理!模型热加载能力大比拼,谁才是真正王者?
盼达思文体科创
经验分享
吐血整理!模型热加载能力大比拼,谁才是真正王者?引言你是否在开发过程中,为了模型更新而频繁重启服务,浪费大量时间?又是否疑惑为什么有些模型加载速度快如闪电,而有些却慢得像蜗牛?今天就带你深入了解模型热加载能力的支持对比,让你不再为模型加载问题而烦恼!核心内容模型热加载概念科普场景化描述:想象一下,你正在运营一个基于机器学习模型的在线推荐系统。当你训练出了一个新的、性能更好的模型时,如果不能进行热加
- 探索并应用Copilot背后的技术:自主代理架构
花生糖@
AIGC学习资料库copilotAIGC人工智能
引言Copilot技术,作为现代软件开发中的一个创新工具,正在改变编程的协作方式。它通过集成到开发环境中,为开发者提供实时的代码建议和自动化的代码补全功能。本篇文章将深入探讨Copilot背后的技术——自主代理架构,并探讨其在软件开发中的应用潜力。Copilot技术概述Copilot是由GitHub和OpenAI合作开发的一项技术,它利用机器学习模型来理解代码上下文,并提供智能的代码补全建议。这项
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- 景联文科技:以全面数据处理服务推动AI创新与产业智能化转型
景联文科技
人工智能
数据标注公司在人工智能领域扮演着重要角色,通过提供高质量的数据标注服务,帮助企业和组织训练和优化机器学习模型。从需求分析到数据交付,每一个步骤都需要严格把控,确保数据的质量和安全性。景联文科技是一家专业的数据采集与标注公司,致力于为客户提供高质量的数据处理服务,助力企业在人工智能(AI)领域的创新与发展。数据标注的四项基本流程:数据采集、数据清洗、数据标注、数据质检。数据采集数据采集是数据处理的第
- 高效高并发调度架构
之群害马
架构
以下是从架构层面为你提供的适合多核CPU、多GPU环境下API客户端、服务端高级调度,以实现高效并发大规模与用户交互的技术栈:通信协议gRPC:基于HTTP/2协议,具有高性能、低延迟的特点,支持二进制序列化(通常搭配Protobuf),非常适合高并发场景。它提供了流式通信和多路复用功能,可有效减少网络开销。常用于微服务之间的通信,例如机器学习模型服务与前端应用之间的交互。RSocket:是一种基
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 机器学习 网络安全
网络安全Max
机器学习web安全人工智能
实现机械学习网络安全的流程概述在实现“机器学习网络安全”这个任务中,我们需要经历一系列步骤,从数据准备、训练到模型评估。在这篇文章中,我将详细介绍每个步骤的具体操作,并附上相应的代码示例和解释。步骤下面是实现机器学习网络安全的流程,简单概括如下:步骤描述1.数据采集从网络安全日志或其他数据源中采集数据2.数据预处理对数据进行清洗、归一化和特征提取等操作3.模型选择选择适合网络安全场景的机器学习模型
- 【人工智能在制造业的具体应用案例-质量控制】
局外人_Jia
深度学习大数据人工智能c#
首先,我需要明确质量控制的关键点。质量控制通常涉及产品检测、缺陷识别、数据分析等。可能用到的技术包括图像处理、机器学习模型、实时监控和数据收集等。我们已经了解预测性维护的步骤,所以需要类比但调整到质量控制上。比如数据采集可能不再是传感器数据,而是图像或视觉数据。需要思考如何用C#处理图像,是否有合适的库,比如OpenCV的.NET版本EmguCV。接下来,数据处理部分可能需要特征提取,比如从图像中
- 数据驱动的DevOps,MLOps工具链初现端倪
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
DevOps,MLOps,数据驱动,工具链,自动化,持续交付,模型部署,模型监控1.背景介绍在当今以数据为中心的时代,软件开发和机器学习模型的部署和维护日益复杂。传统的开发流程难以满足快速迭代、持续交付和模型生命周期管理的需求。DevOps和MLOps应运而生,旨在通过自动化、持续集成和持续交付等实践,提高软件开发和机器学习模型部署的效率和可靠性。DevOps是一种文化和实践,旨在打破开发和运维之
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- 多模态模型详解
换个网名有点难
深度学习人工智能计算机视觉
多模态模型是什么多模态模型是一种能够处理和理解多种数据类型(如文本、图像、音频、视频等)的机器学习模型,通过融合不同模态的信息来提升任务的性能。其核心在于利用不同模态之间的互补性,增强模型的鲁棒性和准确性。如何融合多个模型以下是多模态模型的融合方法及关键技术的详细解析:一、多模态模型的核心概念模态定义:单模态:单一类型的数据(如纯文本或纯图像)。多模态:多种类型数据的组合(如“图像+文本”“音频+
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- 零基础入门机器学习 -- 第三章第一个机器学习模型——线性回归
山海青风
#机器学习人工智能机器学习回归线性回归python
3.1线性回归的概念在现实生活中,许多事情都遵循某种线性关系,比如:房价vs面积:房子的面积越大,价格通常越高。工资vs工作经验:工作经验越多,薪资往往更高。汽车油耗vs车速:在一定范围内,车速越快,油耗可能越高。线性回归(LinearRegression)是机器学习中最基础的算法之一,它用于研究两个变量之间的线性关系,即一个变量(自变量)如何影响另一个变量(因变量)。3.2线性回归的数学直觉线性
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- Milvus向量数据库操作教程
2401_85763639
milvus数据库
Milvus是一款专为向量数据设计的数据库,它具备高性能、高可用和易扩展的特点,主要用于处理由深度神经网络和其他机器学习模型生成的大规模嵌入向量[162][165]。以下是Milvus向量数据库的详细解释:定义与用途:Milvus是一个云原生向量数据库,专为海量向量数据的实时召回而设计。它基于FAISS、Annoy、HNSW等向量搜索库构建,主要解决稠密向量相似度检索的问题[163]。核心优势:高
- k折交叉验证(k-fold Cross-validation)
向大厂出发
python开发语言
一、基本概述交叉验证是在机器学习建立模型和验证模型参数时常用的办法,一般被用于评估一个机器学习模型的表现。更多的情况下,我们也用交叉验证来进行模型选择(modelselection)。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可
- 通过Kubernetes上免费部署Ollama如何使用DeepSeek
❀͜͡傀儡师
kubernetes容器云原生
Ollama和Kubernetes的结合优势二者结合后,我们可以快速部署Ollama服务器,并通过API与DeepSeek模型进行交互。Ollama通过RESTAPI简化了模型服务的部署和调用,支持多种机器学习模型。Kubernetes提供灵活的扩展性和高可用性,适合部署复杂的模型服务。为Ollama创建一个专用命名空间。kubectlcreatnsollama创建一个ollama-deploy.
- 2025最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研应用
梦想的初衷~
AI大语言人工智能chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大模型接入Gradio实现本地化部署
山山而川_R
大模型人工智能语言模型
Terminator好用的一个终端Gradio官网地址Gradio是一个用于快速创建交互式界面的Python库,这些界面可以用于演示和测试机器学习模型。使用Gradio,开发者可以非常轻松地为他们的模型构建一个前端界面,而不需要任何Web开发经验。新建环境condacreate-ngradiopython==3.8condaactivategradiopipinstallgradio-ihttps
- 机器学习模型创建的数学原理
HadesZ~
机器学习笔记机器学习算法人工智能
1模型工作原理机器学习学习模型主要分为监督学习、无监督学习、半监督学习和强化学习,本文聚焦探讨目前应用最为广泛的监督学习问题,下午如未特殊指明,机器学习特指有监督学习机器学习。众所周知,监督学习模型是通过一定数学原理,根据输入特征数据计算出预测结果的函数映射,它由自变量、函数参数和因变量组成。其中,自变量是输入模型的特征数据,模型参数分普通参数和超参数两种,因变量是模型计算出的预测结果。超参数直接
- 6个最佳实体检测API,可准确返回实体的名称
程序员后端
命名实体识别(NamedEntityRecognition)也称作实体检测(EntityDetection),是NLP技术手册中的一个重要工具。在高级深度学习和机器学习模型的支持下,命名实体识别技术正被产品经理用来创建人工智能支持的工具,并将其应用到各行各业的智能平台中。在本文中,我们将介绍命名实体识别技术的具体内容、工作原理、一些热门用例以及执行实体检测的最佳API。什么是命名实体识别或实体检测
- AppML 案例未来
lly202406
开发语言
AppML案例未来引言随着移动互联网的快速发展,应用市场(AppMarket)逐渐成为人们日常生活的重要组成部分。在这个充满变革的时代,AppML(应用机器学习)作为一种新兴技术,正在改变着应用开发的模式。本文将探讨AppML的应用案例及其未来发展趋势。AppML概述AppML,即应用机器学习,是一种将机器学习技术应用于应用开发的技术。通过AppML,开发者可以将机器学习模型嵌入到应用中,使应用具
- 当大模型遇上Spark:解锁大数据处理新姿势
敏叔V587
spark大数据分布式
大模型与Spark:技术初印象在当今数字化浪潮中,大模型和Spark无疑是备受瞩目的两大技术。它们各自在人工智能和大数据处理领域大放异彩,而当这两者相遇,又会碰撞出怎样的火花呢?让我们先来分别认识一下大模型和Spark。大模型,即大规模机器学习模型,是利用海量数据和强大算力训练出来的“大参数”模型。其发展历程可谓是一部科技创新的传奇史。从20世纪中叶人工智能概念的提出,到2006年深度学习技术崭露
- 利用Docker简化机器学习应用程序的部署和可扩展性
荆州克莱
面试题汇总与解析springcloudspringbootspring技术css3
利用Docker的强大功能:简化部署解决方案,确保可扩展性,并简化机器学习模型的持续集成/持续交付(CI/CD)流程。机器学习(ML)近年来取得了爆炸性增长,导致对稳健、可扩展和高效部署方法的需求增加。传统方法往往需要帮助将ML模型操作化,原因包括训练和服务环境之间的差异或扩展的困难。Docker是一个旨在自动化应用程序部署、扩展和管理的开源平台,作为解决这些挑战的方法。所提出的方法将ML模型及其
- 人工智能机器学习基本概念详解
猿享天开
人工智能基础知识学习机器学习人工智能
人工智能机器学习基本概念详解机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)的一个重要分支,旨在让计算机系统自动从数据中学习并进行预测或决策,而无需明确的编程指令。本文将详细探讨机器学习的基本概念,包括监督学习、无监督学习、强化学习及其应用示例。一、机器学习的基本概念1.1数据数据是机器学习的基础。机器学习模型通过分析数据来识别模式和
- 因果关系推断与机器学习
hhhh106
读书笔记大数据
因果关系定义设X和Y是两个随机变量。定义X是Y的因,即因果关系X→Y存在,当且仅当Y的取值一定会随X的取值变化而发生变化。两个变量X、Y之间有相关性往往不是我们能判断它们之间有因果关系的依据。其中包括三种情况:X是Y的因、X是Y的果、X与Y有共同原因(commoncause)。对于第三种情况,我们把这种不是因果关系的相关性叫作虚假相关(spuriouscorrelation)。机器学习模型是强大的
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- PennyLane: 探索量子计算的新里程
戴艺音
PennyLane:探索量子计算的新里程项目地址:https://gitcode.com/gh_mirrors/pe/pennylane项目简介是一个开源软件框架,专注于混合量子和经典计算。由PennyLaneAI团队开发,该项目提供了一个直观且灵活的方式来设计、训练和优化涉及量子硬件的机器学习模型。其目标是让研究人员和开发者能够轻松地在本地或云端的量子计算机上进行实验。技术分析PennyLane
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam