pytorch中特殊的Module--Sqeuential的三种实现方式

# -*- coding: utf-8 -*-
#@Time    :2019/7/1 13:34
#@Author  :XiaoMa

import torch as t
from torch import nn
#Sequential的三种写法
net1=nn.Sequential()
net1.add_module('conv',nn.Conv2d(3,3,3))    #Conv2D(输入通道数,输出通道数,卷积核大小)
net1.add_module('batchnorm',nn.BatchNorm2d(3))    #BatchNorm2d(特征数)
net1.add_module('activation_layer',nn.ReLU())

net2=nn.Sequential(nn.Conv2d(3,3,3),
                   nn.BatchNorm2d(3),
                   nn.ReLU()
                   )

from collections import OrderedDict
net3=nn.Sequential(OrderedDict([
    ('conv1',nn.Conv2d(3,3,3)),
    ('bh1',nn.BatchNorm2d(3)),
    ('al',nn.ReLU())
]))

print('net1',net1)
print('net2',net2)
print('net3',net3)

#可根据名字或序号取出子module
print(net1.conv,net2[0],net3.conv1)

输出结果:

net1 Sequential(
  (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (batchnorm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activation_layer): ReLU()
)

net2 Sequential(
  (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
)

net3 Sequential(
  (conv1): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (bh1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (al): ReLU()
)

Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))  
Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))  
Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))

 

你可能感兴趣的:(deepLearning,pytorch)