总结了一些计算向量相似度的函数,例如Cosine, BiLinear, TriLinear, Muiltihead等
import torch
import torch.nn as nn
import math
class CosineSimilarity(nn.Module):
"""
This similarity function simply computes the cosine similarity between each pair of vectors. It has
no parameters.
"""
def forward(self, tensor_1, tensor_2):
normalized_tensor_1 = tensor_1 / tensor_1.norm(dim=-1, keepdim=True)
normalized_tensor_2 = tensor_2 / tensor_2.norm(dim=-1, keepdim=True)
return (normalized_tensor_1 * normalized_tensor_2).sum(dim=-1)
class DotProductSimilarity(nn.Module):
"""
This similarity function simply computes the dot product between each pair of vectors, with an
optional scaling to reduce the variance of the output elements.
"""
def __init__(self, scale_output=False):
super(DotProductSimilarity, self).__init__()
self.scale_output = scale_output
def forward(self, tensor_1, tensor_2):
result = (tensor_1 * tensor_2).sum(dim=-1)
if self.scale_output:
# TODO why allennlp do multiplication at here ?
result /= math.sqrt(tensor_1.size(-1))
return result
class ProjectedDotProductSimilarity(nn.Module):
"""
This similarity function does a projection and then computes the dot product. It's computed
as ``x^T W_1 (y^T W_2)^T``
An activation function applied after the calculation. Default is no activation.
"""
def __init__(self, tensor_1_dim, tensor_2_dim, projected_dim,
reuse_weight=False, bias=False, activation=None):
super(ProjectedDotProductSimilarity, self).__init__()
self.reuse_weight = reuse_weight
self.projecting_weight_1 = nn.Parameter(torch.Tensor(tensor_1_dim, projected_dim))
if self.reuse_weight:
if tensor_1_dim != tensor_2_dim:
raise ValueError('if reuse_weight=True, tensor_1_dim must equal tensor_2_dim')
else:
self.projecting_weight_2 = nn.Parameter(torch.Tensor(tensor_2_dim, projected_dim))
self.bias = nn.Parameter(torch.Tensor(1)) if bias else None
self.activation = activation
def reset_parameters(self):
nn.init.xavier_uniform_(self.projecting_weight_1)
if not self.reuse_weight:
nn.init.xavier_uniform_(self.projecting_weight_2)
if self.bias is not None:
self.bias.data.fill_(0)
def forward(self, tensor_1, tensor_2):
projected_tensor_1 = torch.matmul(tensor_1, self.projecting_weight_1)
if self.reuse_weight:
projected_tensor_2 = torch.matmul(tensor_2, self.projecting_weight_1)
else:
projected_tensor_2 = torch.matmul(tensor_2, self.projecting_weight_2)
result = (projected_tensor_1 * projected_tensor_2).sum(dim=-1)
if self.bias is not None:
result = result + self.bias
if self.activation is not None:
result = self.activation(result)
return result
class BiLinearSimilarity(nn.Module):
"""
This similarity function performs a bilinear transformation of the two input vectors. This
function has a matrix of weights ``W`` and a bias ``b``, and the similarity between two vectors
``x`` and ``y`` is computed as ``x^T W y + b``.
An activation function applied after the calculation. Default is no activation.
"""
def __init__(self, tensor_1_dim, tensor_2_dim, activation=None):
super(BiLinearSimilarity, self).__init__()
self.weight_matrix = nn.Parameter(torch.Tensor(tensor_1_dim, tensor_2_dim))
self.bias = nn.Parameter(torch.Tensor(1))
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight_matrix)
self.bias.data.fill_(0)
def forward(self, tensor_1, tensor_2):
intermediate = torch.matmul(tensor_1, self.weight_matrix)
result = (intermediate * tensor_2).sum(dim=-1) + self.bias
if self.activation is not None:
result = self.activation(result)
return result
class TriLinearSimilarity(nn.Module):
"""
This similarity function performs a trilinear transformation of the two input vectors. It's
computed as ``w^T [x; y; x*y] + b``.
An activation function applied after the calculation. Default is no activation.
"""
def __init__(self, input_dim, activation=None):
super(TriLinearSimilarity, self).__init__()
self.weight_vector = nn.Parameter(torch.Tensor(3 * input_dim))
self.bias = nn.Parameter(torch.Tensor(1))
self.activation = activation
self.reset_parameters()
def reset_parameters(self):
std = math.sqrt(6 / (self.weight_vector.size(0) + 1))
self.weight_vector.data.uniform_(-std, std)
self.bias.data.fill_(0)
def forward(self, tensor_1, tensor_2):
combined_tensors = torch.cat([tensor_1, tensor_2, tensor_1 * tensor_2], dim=-1)
result = torch.matmul(combined_tensors, self.weight_vector) + self.bias
if self.activation is not None:
result = self.activation(result)
return result
class MultiHeadedSimilarity(nn.Module):
"""
This similarity function uses multiple "heads" to compute similarity. That is, we take the
input tensors and project them into a number of new tensors, and compute similarities on each
of the projected tensors individually. The result here has one more dimension than a typical
similarity function.
"""
def __init__(self,
num_heads,
tensor_1_dim,
tensor_1_projected_dim=None,
tensor_2_dim=None,
tensor_2_projected_dim=None,
internal_similarity=DotProductSimilarity()):
super(MultiHeadedSimilarity, self).__init__()
self.num_heads = num_heads
self.internal_similarity = internal_similarity
tensor_1_projected_dim = tensor_1_projected_dim or tensor_1_dim
tensor_2_dim = tensor_2_dim or tensor_1_dim
tensor_2_projected_dim = tensor_2_projected_dim or tensor_2_dim
if tensor_1_projected_dim % num_heads != 0:
raise ValueError("Projected dimension not divisible by number of heads: %d, %d"
% (tensor_1_projected_dim, num_heads))
if tensor_2_projected_dim % num_heads != 0:
raise ValueError("Projected dimension not divisible by number of heads: %d, %d"
% (tensor_2_projected_dim, num_heads))
self.tensor_1_projection = nn.Parameter(torch.Tensor(tensor_1_dim, tensor_1_projected_dim))
self.tensor_2_projection = nn.Parameter(torch.Tensor(tensor_2_dim, tensor_2_projected_dim))
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.tensor_1_projection)
torch.nn.init.xavier_uniform_(self.tensor_2_projection)
def forward(self, tensor_1, tensor_2):
projected_tensor_1 = torch.matmul(tensor_1, self.tensor_1_projection)
projected_tensor_2 = torch.matmul(tensor_2, self.tensor_2_projection)
# Here we split the last dimension of the tensors from (..., projected_dim) to
# (..., num_heads, projected_dim / num_heads), using tensor.view().
last_dim_size = projected_tensor_1.size(-1) // self.num_heads
new_shape = list(projected_tensor_1.size())[:-1] + [self.num_heads, last_dim_size]
split_tensor_1 = projected_tensor_1.view(*new_shape)
last_dim_size = projected_tensor_2.size(-1) // self.num_heads
new_shape = list(projected_tensor_2.size())[:-1] + [self.num_heads, last_dim_size]
split_tensor_2 = projected_tensor_2.view(*new_shape)
# And then we pass this off to our internal similarity function. Because the similarity
# functions don't care what dimension their input has, and only look at the last dimension,
# we don't need to do anything special here. It will just compute similarity on the
# projection dimension for each head, returning a tensor of shape (..., num_heads).
return self.internal_similarity(split_tensor_1, split_tensor_2)