基于tensorflow的简单线性回归实例

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

#在y = 0.2x+0.5 直线周围 以正态分布 随机生成500个点,
num_points = 500
vectors_set = []
for i in range(num_points):
    x1 = np.random.normal(0.0,0.7)#均值0 ,方差0.7
    y1 = x1*0.2 + 0.5 + np.random.normal(0.0,0.05)
    vectors_set.append([x1,y1])
    
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

plt.scatter(x_data,y_data,c='r')
plt.show()

W = tf.Variable(tf.random_uniform([1],-1.0,1.0),name='W')

b = tf.Variable(tf.zeros([1]),name='b')
y = W* x_data + b
loss = tf.reduce_mean(tf.square(y - y_data),name='loss')
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss,name='train')
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

print("W = ", sess.run(W),"b = ",sess.run(b),"loss = ",sess.run(loss))

for step in range(50):
    sess.run(train)
    print("W = ", sess.run(W),"b = ",sess.run(b),"loss = ",sess.run(loss))

plt.scatter(x_data,y_data,c='b')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))




你可能感兴趣的:(tensorflow)