题目TP门
给定两个整数L和U,你需要在闭区间[L,U]内找到距离最接近的两个相邻质数C1和C2(即C2-C1是最小的),如果存在相同距离的其他相邻质数对,则输出第一对。
同时,你还需要找到距离最远的两个相邻质数D1和D2(即D1-D2是最大的),如果存在相同距离的其他相邻质数对,则输出第一对。
每行输入两个整数L和U,其中L和U的差值不会超过1000000。‘
对于每个L和U ,输出一个结果,结果占一行。
结果包括距离最近的相邻质数对和距离最远的相邻质数对。(具体格式参照样例)
如果L和U之间不存在质数对,则输出“There are no adjacent primes.”。
样例输入
2 17
14 17
样例输出
2,3 are closest, 7,11 are most distant.
There are no adjacent primes.
1≤L
解析
L,U范围很大,即使是线性筛法也无法在有限时间内筛选出质数。
我们知道,在任何一个合数n中,必有一个小于sqrt(n)的因子。
所以先用任意筛法(时间复杂度<=O(n))筛出所有在sqrt(U)中的质数。
把这些数记为p。
不难想到,在[L,U]中的数,只要不被p整除,就是质数。找出[L,U]中的质数之后,后面的操作有手就行了。
于是我就想到了枚举L—U中所有的数,能否被P整除
#include
#include
#include
#include
using namespace std;
#define ll long long
const ll MAXN = 1e7 + 5;
vector<ll> zs;
bool f[MAXN];
ll ans1, ans2, ans3, ans4, maxn, minn;
ll l, r, size;
void Sqrt_R() {
ll i, j;
f[1] = 1;
size = 0;
zs.clear();
for (i = 2; i <= sqrt(r); i++) {
if (f[i])
continue;
zs.push_back(i);
for (j = 1; j <= sqrt(r) / i; j++) f[i * j] = 1;
}
}
void Prime_Number() {
ll i, j;
ll last, l1, cnt = 0;
minn = 0x3f3f3f3f;
maxn = -minn;
for (i = l; i <= r; i++) {
bool flag = 0;
for (vector<ll>::iterator it = zs.begin(); it != zs.end(); it++) {
if (i % (*it) == 0) {
flag = 1;
break;
}
}
if (i >= 2 && i <= sqrt(r))
if (flag && (!f[i]))
continue;
if (flag && (!(i >= 2 && i <= sqrt(r))))
continue;
cnt++;
if (cnt >= 2) {
ll min1 = i - last;
if (min1 < minn) {
ans1 = l1;
ans2 = i;
minn = min1;
}
ll max1 = i - last;
if (max1 > maxn) {
ans3 = l1;
ans4 = i;
maxn = max1;
}
}
last = i;
l1 = i;
}
if (cnt >= 2)
printf("%lld,%lld are closest, %lld,%lld are most distant.\n", ans1, ans2, ans3, ans4);
else
printf("There are no adjacent primes.\n");
}
int main() {
while (scanf("%lld %lld", &l, &r) != EOF) {
memset(f, 0, sizeof(f));
Sqrt_R();
Prime_Number();
}
return 0;
}
这种的时间复杂度是O((L-U)*sqrt( U)),于是,我超时了。
于是在上述方法的改进下,在找p的时候,把[L,U]中能整除p的数标记了,时间复杂度就可以减少到O(L-U),就不会超时了,非常人性化。
#include
#include
#include
#include
using namespace std;
#define ll long long
const ll MAXN = 1e7 + 5;
bool f[MAXN], p[MAXN];
ll ans1, ans2, ans3, ans4, maxn, minn;
ll l, r;
void Sqrt_R() {
ll i, j;
f[1] = 1;
for (i = 2; i <= sqrt(r); i++) {
if (f[i])
continue;
ll u = (l - 1) / i + 1;
while ((u * i) < l) u++;
if (u < 2)
u = 2;
while ((u * i) <= r) {
p[(u * i) - l] = 1;
u++;
}
}
}
void Prime_Number() {
ll i, j;
ll last, l1, cnt = 0;
minn = 0x7fffffff;
maxn = -minn;
for (i = l; i <= r; i++) {
if (!p[i - l] && i != 1) {
if (i - last < minn && cnt != 0) {
minn = i - last;
ans1 = last;
ans2 = i;
}
if (i - last > maxn && cnt != 0) {
maxn = i - last;
ans3 = last;
ans4 = i;
}
last = i;
cnt++;
}
}
if (cnt >= 2)
printf("%lld,%lld are closest, %lld,%lld are most distant.\n", ans1, ans2, ans3, ans4);
else
printf("There are no adjacent primes.\n");
}
int main() {
while (scanf("%lld %lld", &l, &r) != EOF) {
memset(f, 0, sizeof(f));
memset(p, 0, sizeof(p));
Sqrt_R();
Prime_Number();
}
return 0;
}
这道题用了埃氏筛法的思想。
单独来看,筛选1-n中的质数,时间复杂度只有O(n*log(n)),是竞赛中最常用的质数筛法。