cf1015F(dp)

这个dp可以说很暴力了。。自己想得太复杂了。。

设个 d[i][j][k],j为平衡系数(其实就是左括号-右括号。。以后就这么叫了),i个字符,匹配到s的第k个字符的方案数。。

然后转移的时候k==m的情况是不参与转移的,排除掉了子串包含 s的情况。。然后用平衡系数==0的所有情况减掉k

然后是关于下一位不与s匹配k应该跳到哪的问题。。这个可以暴力取子串比对。。应该也可以kmp?

 

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<(x))
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 205
#define nm 100005
#define N 1000005
#define M(x,y) x=max(x,y)
const double pi=acos(-1);
const ll inf=1e9+7;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 



int n,m,c[NM][2];
ll d[NM][NM][NM],f[NM][NM],ans;
char s[NM];

int main(){
    n=read()*2;scanf("%s",s+1);m=strlen(s+1);
    if(s[1]=='(')c[0][1]++;else c[0][0]++;
    inc(i,1,m-1)if(s[i+1]=='('){
	c[i][1]=i+1;
	dec(j,i,1)if(s[j]==')'){
	    bool f=true;
	    inc(k,1,j-1)if(s[k]!=s[k+i-j+1]){f=false;break;}
	    if(f){c[i][0]=j;break;}
	}
    }else{
	c[i][0]=i+1;
        dec(j,i,1)if(s[j]=='('){
	    bool f=true;
	    inc(k,1,j-1)if(s[k]!=s[k+i-j+1]){f=false;break;}
	    if(f){c[i][1]=j;break;}
	}
    }

    d[0][0][0]=1;
    inc(i,1,n){
	inc(j,0,n)inc(k,0,m-1)if(d[i-1][j][k]){
	    (d[i][j+1][c[k][1]]+=d[i-1][j][k])%=inf;
	    if(j)(d[i][j-1][c[k][0]]+=d[i-1][j][k])%=inf;
	    //printf("%d %d %d\n",i-1,j,k);
	}
    }
    f[0][0]=1;
    inc(i,1,n)inc(j,0,n){
	(f[i][j+1]+=f[i-1][j])%=inf;
	if(j)(f[i][j-1]+=f[i-1][j])%=inf;
    }
    ans=f[n][0];
    inc(i,0,m-1)ans=(ans-d[n][0][i]+inf)%inf;
    return 0*printf("%I64d\n",ans);
}

 

 

 

F. Bracket Substring

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a bracket sequence s

(not necessarily a regular one). A bracket sequence is a string containing only characters '(' and ')'.

A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters '1' and '+' between the original characters of the sequence. For example, bracket sequences "()()" and "(())" are regular (the resulting expressions are: "(1)+(1)" and "((1+1)+1)"), and ")(", "(" and ")" are not.

Your problem is to calculate the number of regular bracket sequences of length 2n

containing the given bracket sequence s as a substring (consecutive sequence of characters) modulo 109+7 (1000000007

).

Input

The first line of the input contains one integer n

(1≤n≤100) — the half-length of the resulting regular bracket sequences (the resulting sequences must have length equal to 2n

).

The second line of the input contains one string s

(1≤|s|≤200) — the string s that should be a substring in each of the resulting regular bracket sequences (|s| is the length of s

).

Output

Print only one integer — the number of regular bracket sequences containing the given bracket sequence s

as a substring. Since this number can be huge, print it modulo 109+7 (1000000007

).

Examples

Input

Copy

5
()))()

Output

Copy

5

Input

Copy

3
(()

Output

Copy

4

Input

Copy

2
(((

Output

Copy

0

Note

All regular bracket sequences satisfying the conditions above for the first example:

  • "(((()))())";
  • "((()()))()";
  • "((()))()()";
  • "(()(()))()";
  • "()((()))()".

All regular bracket sequences satisfying the conditions above for the second example:

  • "((()))";
  • "(()())";
  • "(())()";
  • "()(())".

And there is no regular bracket sequences of length 4

containing "(((" as a substring in the third example.

 

你可能感兴趣的:(DP)