百度uid-generator学习

 

学习自https://www.cnblogs.com/yeyang/p/10226284.html

百度uid-generator源码

https://github.com/baidu/uid-generator

解析uid-generator

uid-generator是基于Twitter开源的snowflake算法实现的。snowflake雪花算法上文有介绍 传送门
snowflake将long的64位分为了3部分,时间戳、工作机器id和序列号、其中,时间戳部分的时间单位一般为毫秒。也就是说1台工作机器1毫秒可产生4096个id(2的12次方)。

百度uid-generator学习_第1张图片

源码实现分析

与原始的snowflake算法不同,uid-generator支持自定义时间戳、工作机器id和序列号等各部分的位数,以应用于不同场景。默认分配方式如下。

 

  • sign(1bit)
    固定1bit符号标识,即生成的UID为正数。

  • delta seconds (28 bits)
    当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年(注意:1. 这里的单位是秒,而不是毫秒! 2.注意这里的用词,是“最多”可支持8.7年,为什么是“最多”,后面会讲)

  • worker id (22 bits)
    机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。

  • sequence (13 bits)
    每秒下的并发序列,13 bits可支持每秒8192个并发。(注意下这个地方,默认支持qps最大为8192个)

DefaultUidGenerator

DefaultUidGenerator的产生id的方法与基本上就是常见的snowflake算法实现,仅有一些不同,如以秒为为单位而不是毫秒。

DefaultUidGenerator的产生id的方法如下。

/*
 * Copyright (c) 2017 Baidu, Inc. All Rights Reserve.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.baidu.fsg.uid.impl;

import java.util.Date;
import java.util.concurrent.TimeUnit;

import org.apache.commons.lang.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.InitializingBean;

import com.baidu.fsg.uid.BitsAllocator;
import com.baidu.fsg.uid.UidGenerator;
import com.baidu.fsg.uid.exception.UidGenerateException;
import com.baidu.fsg.uid.utils.DateUtils;
import com.baidu.fsg.uid.worker.WorkerIdAssigner;

/**
 * Represents an implementation of {@link UidGenerator}
 *
 * The unique id has 64bits (long), default allocated as blow:
*
  • sign: The highest bit is 0 *
  • delta seconds: The next 28 bits, represents delta seconds since a customer epoch(2016-05-20 00:00:00.000). * Supports about 8.7 years until to 2024-11-20 21:24:16 *
  • worker id: The next 22 bits, represents the worker's id which assigns based on database, max id is about 420W *
  • sequence: The next 13 bits, represents a sequence within the same second, max for 8192/s

    * * The {@link DefaultUidGenerator#parseUID(long)} is a tool method to parse the bits * *
    {@code
     * +------+----------------------+----------------+-----------+
     * | sign |     delta seconds    | worker node id | sequence  |
     * +------+----------------------+----------------+-----------+
     *   1bit          28bits              22bits         13bits
     * }
    * * You can also specified the bits by Spring property setting. *
  • timeBits: default as 28 *
  • workerBits: default as 22 *
  • seqBits: default as 13 *
  • epochStr: Epoch date string format 'yyyy-MM-dd'. Default as '2016-05-20'

    * * Note that: The total bits must be 64 -1 * * @author yutianbao */ public class DefaultUidGenerator implements UidGenerator, InitializingBean { private static final Logger LOGGER = LoggerFactory.getLogger(DefaultUidGenerator.class); /** Bits allocate */ protected int timeBits = 28; protected int workerBits = 22; protected int seqBits = 13; /** Customer epoch, unit as second. For example 2016-05-20 (ms: 1463673600000)*/ protected String epochStr = "2016-05-20"; protected long epochSeconds = TimeUnit.MILLISECONDS.toSeconds(1463673600000L); /** Stable fields after spring bean initializing */ protected BitsAllocator bitsAllocator; protected long workerId; /** Volatile fields caused by nextId() */ protected long sequence = 0L; protected long lastSecond = -1L; /** Spring property */ protected WorkerIdAssigner workerIdAssigner; @Override public void afterPropertiesSet() throws Exception { // initialize bits allocator bitsAllocator = new BitsAllocator(timeBits, workerBits, seqBits); // initialize worker id workerId = workerIdAssigner.assignWorkerId(); if (workerId > bitsAllocator.getMaxWorkerId()) { throw new RuntimeException("Worker id " + workerId + " exceeds the max " + bitsAllocator.getMaxWorkerId()); } LOGGER.info("Initialized bits(1, {}, {}, {}) for workerID:{}", timeBits, workerBits, seqBits, workerId); } @Override public long getUID() throws UidGenerateException { try { return nextId(); } catch (Exception e) { LOGGER.error("Generate unique id exception. ", e); throw new UidGenerateException(e); } } @Override public String parseUID(long uid) { long totalBits = BitsAllocator.TOTAL_BITS; long signBits = bitsAllocator.getSignBits(); long timestampBits = bitsAllocator.getTimestampBits(); long workerIdBits = bitsAllocator.getWorkerIdBits(); long sequenceBits = bitsAllocator.getSequenceBits(); // parse UID long sequence = (uid << (totalBits - sequenceBits)) >>> (totalBits - sequenceBits); long workerId = (uid << (timestampBits + signBits)) >>> (totalBits - workerIdBits); long deltaSeconds = uid >>> (workerIdBits + sequenceBits); Date thatTime = new Date(TimeUnit.SECONDS.toMillis(epochSeconds + deltaSeconds)); String thatTimeStr = DateUtils.formatByDateTimePattern(thatTime); // format as string return String.format("{\"UID\":\"%d\",\"timestamp\":\"%s\",\"workerId\":\"%d\",\"sequence\":\"%d\"}", uid, thatTimeStr, workerId, sequence); } /** * Get UID * * @return UID * @throws UidGenerateException in the case: Clock moved backwards; Exceeds the max timestamp */ protected synchronized long nextId() { long currentSecond = getCurrentSecond(); // Clock moved backwards, refuse to generate uid if (currentSecond < lastSecond) { long refusedSeconds = lastSecond - currentSecond; throw new UidGenerateException("Clock moved backwards. Refusing for %d seconds", refusedSeconds); } // At the same second, increase sequence if (currentSecond == lastSecond) { sequence = (sequence + 1) & bitsAllocator.getMaxSequence(); // Exceed the max sequence, we wait the next second to generate uid if (sequence == 0) { currentSecond = getNextSecond(lastSecond); } // At the different second, sequence restart from zero } else { sequence = 0L; } lastSecond = currentSecond; // Allocate bits for UID return bitsAllocator.allocate(currentSecond - epochSeconds, workerId, sequence); } /** * Get next millisecond */ private long getNextSecond(long lastTimestamp) { long timestamp = getCurrentSecond(); while (timestamp <= lastTimestamp) { timestamp = getCurrentSecond(); } return timestamp; } /** * Get current second */ private long getCurrentSecond() { long currentSecond = TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis()); if (currentSecond - epochSeconds > bitsAllocator.getMaxDeltaSeconds()) { throw new UidGenerateException("Timestamp bits is exhausted. Refusing UID generate. Now: " + currentSecond); } return currentSecond; } /** * Setters for spring property */ public void setWorkerIdAssigner(WorkerIdAssigner workerIdAssigner) { this.workerIdAssigner = workerIdAssigner; } public void setTimeBits(int timeBits) { if (timeBits > 0) { this.timeBits = timeBits; } } public void setWorkerBits(int workerBits) { if (workerBits > 0) { this.workerBits = workerBits; } } public void setSeqBits(int seqBits) { if (seqBits > 0) { this.seqBits = seqBits; } } public void setEpochStr(String epochStr) { if (StringUtils.isNotBlank(epochStr)) { this.epochStr = epochStr; this.epochSeconds = TimeUnit.MILLISECONDS.toSeconds(DateUtils.parseByDayPattern(epochStr).getTime()); } } }

  • 核心代码:

    /**
         * Get UID
         *
         * @return UID
         * @throws UidGenerateException in the case: Clock moved backwards; Exceeds the max timestamp
         */
        protected synchronized long nextId() {
            long currentSecond = getCurrentSecond();
    
            // Clock moved backwards, refuse to generate uid
            if (currentSecond < lastSecond) {
                long refusedSeconds = lastSecond - currentSecond;
                throw new UidGenerateException("Clock moved backwards. Refusing for %d seconds", refusedSeconds);
            }
    
            // At the same second, increase sequence
            if (currentSecond == lastSecond) {
                sequence = (sequence + 1) & bitsAllocator.getMaxSequence();
                // Exceed the max sequence, we wait the next second to generate uid
                if (sequence == 0) {
                    currentSecond = getNextSecond(lastSecond);
                }
    
            // At the different second, sequence restart from zero
            } else {
                sequence = 0L;
            }
    
            lastSecond = currentSecond;
    
            // Allocate bits for UID
            return bitsAllocator.allocate(currentSecond - epochSeconds, workerId, sequence);
        }

     

    CachedUidGenerator

    CachedUidGenerator支持缓存生成的id。

    基本实现原理

    关于CachedUidGenerator,文档上是这样介绍的。

    在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。

    【采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费】

     

    使用RingBuffer缓存生成的id。RingBuffer是个环形数组,默认大小为8192个,里面缓存着生成的id。

    获取id

    会从ringbuffer中拿一个id,支持并发获取

    填充id

    RingBuffer填充时机

    • 程序启动时,将RingBuffer填充满,缓存着8192个id

    • 在调用getUID()获取id时,检测到RingBuffer中的剩余id个数小于总个数的50%,将RingBuffer填充满,使其缓存8192个id

    • 定时填充(可配置是否使用以及定时任务的周期)

    【UidGenerator通过借用未来时间来解决sequence天然存在的并发限制】

     

    因为delta seconds部分是以秒为单位的,所以1个worker 1秒内最多生成的id书为8192个(2的13次方)。

    从上可知,支持的最大qps为8192,所以通过缓存id来提高吞吐量。

    为什么叫借助未来时间?

    因为每秒最多生成8192个id,当1秒获取id数多于8192时,RingBuffer中的id很快消耗完毕,在填充RingBuffer时,生成的id的delta seconds 部分只能使用未来的时间。

    (因为使用了未来的时间来生成id,所以上面说的是,【最多】可支持约8.7年)

     

    /*
     * Copyright (c) 2017 Baidu, Inc. All Rights Reserve.
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    package com.baidu.fsg.uid.impl;
    
    import java.util.ArrayList;
    import java.util.List;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import org.springframework.beans.factory.DisposableBean;
    import org.springframework.util.Assert;
    
    import com.baidu.fsg.uid.BitsAllocator;
    import com.baidu.fsg.uid.UidGenerator;
    import com.baidu.fsg.uid.buffer.BufferPaddingExecutor;
    import com.baidu.fsg.uid.buffer.RejectedPutBufferHandler;
    import com.baidu.fsg.uid.buffer.RejectedTakeBufferHandler;
    import com.baidu.fsg.uid.buffer.RingBuffer;
    import com.baidu.fsg.uid.exception.UidGenerateException;
    
    /**
     * Represents a cached implementation of {@link UidGenerator} extends
     * from {@link DefaultUidGenerator}, based on a lock free {@link RingBuffer}

    * * The spring properties you can specified as below:
    *

  • boostPower: RingBuffer size boost for a power of 2, Sample: boostPower is 3, it means the buffer size * will be ({@link BitsAllocator#getMaxSequence()} + 1) << * {@link #boostPower}, Default as {@value #DEFAULT_BOOST_POWER} *
  • paddingFactor: Represents a percent value of (0 - 100). When the count of rest available UIDs reach the * threshold, it will trigger padding buffer. Default as{@link RingBuffer#DEFAULT_PADDING_PERCENT} * Sample: paddingFactor=20, bufferSize=1000 -> threshold=1000 * 20 /100, padding buffer will be triggered when tail-cursorscheduleInterval: Padding buffer in a schedule, specify padding buffer interval, Unit as second *
  • rejectedPutBufferHandler: Policy for rejected put buffer. Default as discard put request, just do logging *
  • rejectedTakeBufferHandler: Policy for rejected take buffer. Default as throwing up an exception * * @author yutianbao */ public class CachedUidGenerator extends DefaultUidGenerator implements DisposableBean { private static final Logger LOGGER = LoggerFactory.getLogger(CachedUidGenerator.class); private static final int DEFAULT_BOOST_POWER = 3; /** Spring properties */ private int boostPower = DEFAULT_BOOST_POWER; private int paddingFactor = RingBuffer.DEFAULT_PADDING_PERCENT; private Long scheduleInterval; private RejectedPutBufferHandler rejectedPutBufferHandler; private RejectedTakeBufferHandler rejectedTakeBufferHandler; /** RingBuffer */ private RingBuffer ringBuffer; private BufferPaddingExecutor bufferPaddingExecutor; @Override public void afterPropertiesSet() throws Exception { // initialize workerId & bitsAllocator super.afterPropertiesSet(); // initialize RingBuffer & RingBufferPaddingExecutor this.initRingBuffer(); LOGGER.info("Initialized RingBuffer successfully."); } @Override public long getUID() { try { return ringBuffer.take(); } catch (Exception e) { LOGGER.error("Generate unique id exception. ", e); throw new UidGenerateException(e); } } @Override public String parseUID(long uid) { return super.parseUID(uid); } @Override public void destroy() throws Exception { bufferPaddingExecutor.shutdown(); } /** * Get the UIDs in the same specified second under the max sequence * * @param currentSecond * @return UID list, size of {@link BitsAllocator#getMaxSequence()} + 1 */ protected List nextIdsForOneSecond(long currentSecond) { // Initialize result list size of (max sequence + 1) int listSize = (int) bitsAllocator.getMaxSequence() + 1; List uidList = new ArrayList<>(listSize); // Allocate the first sequence of the second, the others can be calculated with the offset long firstSeqUid = bitsAllocator.allocate(currentSecond - epochSeconds, workerId, 0L); for (int offset = 0; offset < listSize; offset++) { uidList.add(firstSeqUid + offset); } return uidList; } /** * Initialize RingBuffer & RingBufferPaddingExecutor */ private void initRingBuffer() { // initialize RingBuffer int bufferSize = ((int) bitsAllocator.getMaxSequence() + 1) << boostPower; this.ringBuffer = new RingBuffer(bufferSize, paddingFactor); LOGGER.info("Initialized ring buffer size:{}, paddingFactor:{}", bufferSize, paddingFactor); // initialize RingBufferPaddingExecutor boolean usingSchedule = (scheduleInterval != null); this.bufferPaddingExecutor = new BufferPaddingExecutor(ringBuffer, this::nextIdsForOneSecond, usingSchedule); if (usingSchedule) { bufferPaddingExecutor.setScheduleInterval(scheduleInterval); } LOGGER.info("Initialized BufferPaddingExecutor. Using schdule:{}, interval:{}", usingSchedule, scheduleInterval); // set rejected put/take handle policy this.ringBuffer.setBufferPaddingExecutor(bufferPaddingExecutor); if (rejectedPutBufferHandler != null) { this.ringBuffer.setRejectedPutHandler(rejectedPutBufferHandler); } if (rejectedTakeBufferHandler != null) { this.ringBuffer.setRejectedTakeHandler(rejectedTakeBufferHandler); } // fill in all slots of the RingBuffer bufferPaddingExecutor.paddingBuffer(); // start buffer padding threads bufferPaddingExecutor.start(); } /** * Setters for spring property */ public void setBoostPower(int boostPower) { Assert.isTrue(boostPower > 0, "Boost power must be positive!"); this.boostPower = boostPower; } public void setRejectedPutBufferHandler(RejectedPutBufferHandler rejectedPutBufferHandler) { Assert.notNull(rejectedPutBufferHandler, "RejectedPutBufferHandler can't be null!"); this.rejectedPutBufferHandler = rejectedPutBufferHandler; } public void setRejectedTakeBufferHandler(RejectedTakeBufferHandler rejectedTakeBufferHandler) { Assert.notNull(rejectedTakeBufferHandler, "RejectedTakeBufferHandler can't be null!"); this.rejectedTakeBufferHandler = rejectedTakeBufferHandler; } public void setScheduleInterval(long scheduleInterval) { Assert.isTrue(scheduleInterval > 0, "Schedule interval must positive!"); this.scheduleInterval = scheduleInterval; } }
  • 获取uid

    @Override
        public long getUID() {
            try {
                return ringBuffer.take();
            } catch (Exception e) {
                LOGGER.error("Generate unique id exception. ", e);
                throw new UidGenerateException(e);
            }
        }

    RingBuffer缓存已生成的id

    (注意:这里的RingBuffer不是Disruptor框架中的RingBuffer,但是借助了很多Disruptor中RingBuffer的设计思想,比如使用缓存行填充解决伪共享问题)

    RingBuffer为环形数组,默认容量为sequence可容纳的最大值(8192个),可以通过boostPower参数设置大小。

    tail指针、Cursor指针用于环形数组上读写slot:

    • Tail指针
      表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler指定PutRejectPolicy

    • Cursor指针
      表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler指定TakeRejectPolicy

    CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)

    由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine 补齐方式。

     

    public class RingBuffer {
        private static final Logger LOGGER = LoggerFactory.getLogger(RingBuffer.class);
    
        /** Constants */
        private static final int START_POINT = -1; 
        private static final long CAN_PUT_FLAG = 0L; //用于标记当前slot的状态,表示可以put一个id进去
        private static final long CAN_TAKE_FLAG = 1L; //用于标记当前slot的状态,表示可以take一个id
        public static final int DEFAULT_PADDING_PERCENT = 50; //用于控制何时填充slots的默认阈值:当剩余的可用的slot的个数,小于bufferSize的50%时,需要生成id将slots填满
    
        /** The size of RingBuffer's slots, each slot hold a UID */
        private final int bufferSize; //slots的大小,默认为sequence可容量的最大值,即8192个
        private final long indexMask; 
      
        private final long[] slots;  //slots用于缓存已经生成的id
        private final PaddedAtomicLong[] flags; //flags用于存储id的状态(是否可填充、是否可消费)
    
        /** Tail: last position sequence to produce */
        //Tail指针
        //表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler指定PutRejectPolicy
        private final AtomicLong tail = new PaddedAtomicLong(START_POINT); //
    
        /** Cursor: current position sequence to consume */
        //表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler指定TakeRejectPolicy
        private final AtomicLong cursor = new PaddedAtomicLong(START_POINT);
    
        /** Threshold for trigger padding buffer*/
        private final int paddingThreshold; //用于控制何时填充slots的阈值
        
        /** Reject put/take buffer handle policy */
        //当slots满了,无法继续put时的处理策略。默认实现:无法进行put,仅记录日志
        private RejectedPutBufferHandler rejectedPutHandler = this::discardPutBuffer;
        //当slots空了,无法继续take时的处理策略。默认实现:仅抛出异常
        private RejectedTakeBufferHandler rejectedTakeHandler = this::exceptionRejectedTakeBuffer; 
        
        /** Executor of padding buffer */
        //用于运行【生成id将slots填满】任务
        private BufferPaddingExecutor bufferPaddingExecutor;

    RingBuffer填充时机

    • 程序启动时,将RingBuffer填充满,缓存着8192个id

    • 在调用getUID()获取id时,检测到RingBuffer中的剩余id个数小于总个数的50%,将RingBuffer填充满,使其缓存8192个id

    • 定时填充(可配置是否使用以及定时任务的周期)

    填充RingBuffer

    /**
         * Padding buffer fill the slots until to catch the cursor
         */
        public void paddingBuffer() {
            LOGGER.info("Ready to padding buffer lastSecond:{}. {}", lastSecond.get(), ringBuffer);
    
            // is still running
            if (!running.compareAndSet(false, true)) {
                LOGGER.info("Padding buffer is still running. {}", ringBuffer);
                return;
            }
    
            // fill the rest slots until to catch the cursor
            boolean isFullRingBuffer = false;
            while (!isFullRingBuffer) {
                //获取生成的id,放到RingBuffer中。
                List uidList = uidProvider.provide(lastSecond.incrementAndGet());
                for (Long uid : uidList) {
                    isFullRingBuffer = !ringBuffer.put(uid);
                    if (isFullRingBuffer) {
                        break;
                    }
                }
            }
    
            // not running now
            running.compareAndSet(true, false);
            LOGGER.info("End to padding buffer lastSecond:{}. {}", lastSecond.get(), ringBuffer);
        }

    生成id(上面代码中的uidProvider.provide调用的就是这个方法)

    /**
         * Get the UIDs in the same specified second under the max sequence
         * 
         * @param currentSecond
         * @return UID list, size of {@link BitsAllocator#getMaxSequence()} + 1
         */
        protected List nextIdsForOneSecond(long currentSecond) {
            // Initialize result list size of (max sequence + 1)
            int listSize = (int) bitsAllocator.getMaxSequence() + 1;
            List uidList = new ArrayList<>(listSize);
    
            // Allocate the first sequence of the second, the others can be calculated with the offset
            //这里的实现很取巧
            //因为1秒内生成的id是连续的,所以利用第1个id来生成后面的id,而不用频繁调用snowflake算法
            long firstSeqUid = bitsAllocator.allocate(currentSecond - epochSeconds, workerId, 0L);
            for (int offset = 0; offset < listSize; offset++) {
                uidList.add(firstSeqUid + offset);
            }
    
            return uidList;
        }

    填充缓存行解决“伪共享”

    关于伪共享,可以参考这篇文章《伪共享(false sharing),并发编程无声的性能杀手》

    //数组在物理上是连续存储的,flags数组用来保存id的状态(是否可消费、是否可填充),在填入id和消费id时,会被频繁的修改。
        //如果不进行缓存行填充,会导致频繁的缓存行失效,直接从内存中读数据。
        private final PaddedAtomicLong[] flags;
    
        //tail和cursor都使用缓存行填充,是为了避免tail和cursor落到同一个缓存行上。
        /** Tail: last position sequence to produce */
        private final AtomicLong tail = new PaddedAtomicLong(START_POINT);
    
        /** Cursor: current position sequence to consume */
        private final AtomicLong cursor = new PaddedAtomicLong(START_POINT)
    /**
     * Represents a padded {@link AtomicLong} to prevent the FalseSharing problem

    * * The CPU cache line commonly be 64 bytes, here is a sample of cache line after padding:
    * 64 bytes = 8 bytes (object reference) + 6 * 8 bytes (padded long) + 8 bytes (a long value) * @author yutianbao */ public class PaddedAtomicLong extends AtomicLong { private static final long serialVersionUID = -3415778863941386253L; /** Padded 6 long (48 bytes) */ public volatile long p1, p2, p3, p4, p5, p6 = 7L; /** * Constructors from {@link AtomicLong} */ public PaddedAtomicLong() { super(); } public PaddedAtomicLong(long initialValue) { super(initialValue); } /** * To prevent GC optimizations for cleaning unused padded references */ public long sumPaddingToPreventOptimization() { return p1 + p2 + p3 + p4 + p5 + p6; } }

     

    你可能感兴趣的:(java)