一、前言
我们在分析ReentrantLock源码之前最好先了解AQS,因为ReentrantLock是基于AQS实现的。AQS源码分析在之前的博客已经进行了深入分析。传送门:深入理解AQS(AbstractQueuedSynchronizer)
二、ReentrantLock数据结构
ReentrantLock的底层是借助AbstractQueuedSynchronizer实现,所以其数据结构依附于AbstractQueuedSynchronizer的数据结构,关于AQS的数据结构,在前一篇已经介绍过,不再累赘。
三、ReentrantLock源码分析
3.1 类的继承关系
public class ReentrantLock implements Lock, java.io.Serializable
说明:ReentrantLock实现了Lock接口,Lock接口中定义了lock与unlock相关操作,并且还存在newCondition方法,表示生成一个条件。
3.2 类的内部类
ReentrantLock总共有三个内部类,并且三个内部类是紧密相关的,下面先看三个类的关系。
说明:ReentrantLock类内部总共存在Sync、NonfairSync、FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自AbstractQueuedSynchronizer抽象类。下面逐个进行分析。
(1)Sync类的源码如下:
abstract static class Sync extends AbstractQueuedSynchronizer {
// 序列号
private static final long serialVersionUID = -5179523762034025860L;
// 获取锁
abstract void lock();
// 非公平方式获取
final boolean nonfairTryAcquire(int acquires) {
// 当前线程
final Thread current = Thread.currentThread();
// 获取状态
int c = getState();
if (c == 0) { // 表示没有线程正在竞争该锁
if (compareAndSetState(0, acquires)) { // 比较并设置状态成功,状态0表示锁没有被占用
// 设置当前线程独占
setExclusiveOwnerThread(current);
return true; // 成功
}
}
else if (current == getExclusiveOwnerThread()) { // 当前线程拥有该锁
int nextc = c + acquires; // 增加重入次数
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
// 设置状态
setState(nextc);
// 成功
return true;
}
// 失败
return false;
}
// 试图在共享模式下获取对象状态,此方法应该查询是否允许它在共享模式下获取对象状态,如果允许,则获取它
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread()) // 当前线程不为独占线程
throw new IllegalMonitorStateException(); // 抛出异常
// 释放标识
boolean free = false;
if (c == 0) {
free = true;
// 已经释放,清空独占
setExclusiveOwnerThread(null);
}
// 设置标识
setState(c);
return free;
}
// 判断资源是否被当前线程占有
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
// 新生一个条件
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
// 返回资源的占用线程
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
// 返回状态
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
// 资源是否被占用
final boolean isLocked() {
return getState() != 0;
}
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
*/
// 自定义反序列化逻辑
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
说明:Sync类存在如下方法和作用如下:
(2).NonfairSync类
NonfairSync类继承了Sync类,表示采用非公平策略获取锁,其实现了Sync类中抽象的lock方法,源码如下:
// 非公平锁
static final class NonfairSync extends Sync {
// 版本号
private static final long serialVersionUID = 7316153563782823691L;
// 获得锁
final void lock() {
if (compareAndSetState(0, 1)) // 比较并设置状态成功,状态0表示锁没有被占用
// 把当前线程设置独占了锁
setExclusiveOwnerThread(Thread.currentThread());
else // 锁已经被占用,或者set失败
// 以独占模式获取对象,忽略中断
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
说明:从lock方法的源码可知,每一次都尝试获取锁,而并不会按照公平等待的原则进行等待,让等待时间最久的线程获得锁。(3)FairSyn类
FairSync类也继承了Sync类,表示采用公平策略获取锁,其实现了Sync类中的抽象lock方法,源码如下:
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* 尝试获取独占锁. 两种情况:
* 1. 锁未被占用(state = 0 )
* 如果等待队列为空 或当前线程时等待队列首个出队线程 则尝试获取锁.
* 2. 锁被占用(state != 0)
* 校验当前线程是否已经拥有独占锁,如果是,则记录重入次数。
* @param acquires
* @return
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
//是否有其他线程先于当前线程等待获取锁,即判断队列中是否有前驱节点
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
//1)如果h==t成立,队列为空,无前驱节点,返回false。
//2)如果h!=t成立,从head节点的next是否为null,如果为null,返回true。什么情况下h!=t的同时h.next==null??,
//有其他线程第一次正在入队时,可能会出现。见AQS的enq方法,compareAndSetHead(node)完成,还没执行tail = head语句时,此时tail=null,head=newNode,head.next-null。
//3)如果h!=t成立,从head节点的next是否不为null,则判断是否是当前线程,如果是返回false,否则有前驱节点,返回true
}
说明:跟踪lock方法的源码可知,当资源空闲时,它总是会先判断sync队列(AbstractQueuedSynchronizer中的数据结构)是否有等待时间更长的线程,如果存在,则将该线程加入到等待队列的尾部,实现了公平获取原则。其中,FairSync类的lock的方法调用如下,只给出了主要的方法。
说明:可以看出只要资源被其他线程占用,该线程就会添加到sync queue中的尾部,而不会先尝试获取资源。这也是和Nonfair最大的区别,Nonfair每一次都会尝试去获取资源,如果此时该资源恰好被释放,则会被当前线程获取,这就造成了不公平的现象,当获取不成功,再加入队列尾部。
3.3 类的属性
public class ReentrantLock implements Lock, java.io.Serializable {
// 序列号
private static final long serialVersionUID = 7373984872572414699L;
// 同步队列
private final Sync sync;
}
说明:ReentrantLock类的sync非常重要,对ReentrantLock类的操作大部分都直接转化为对Sync和AbstractQueuedSynchronizer类的操作
3.4 类的构造函数
(1). ReentrantLock()型构造函数
public ReentrantLock() {
// 默认非公平策略
sync = new NonfairSync();
}
说明:可以看到默认是采用的非公平策略获取锁。
(2).ReentrantLock(boolean)型构造函数
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
说明:可以传递参数确定采用公平策略或者是非公平策略,参数为true表示公平策略,否则,采用非公平策略.
3.5 核心函数分析
通过分析ReentrantLock的源码,可知对其操作都转化为对Sync对象的操作,由于Sync继承了AQS,所以基本上都可以转化为对AQS的操作。如将ReentrantLock的lock函数转化为对Sync的lock函数的调用,而具体会根据采用的策略(如公平策略或者非公平策略)的不同而调用到Sync的不同子类。
所以可知,在ReentrantLock的背后,是AQS对其服务提供了支持,由于之前我们分析AQS的核心源码,遂不再累赘。下面还是通过例子来更进一步分析源码。
四、示例分析
4.1 公平锁
package com.hust.grid.leesf.abstractqueuedsynchronizer;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
class MyThread extends Thread {
private Lock lock;
public MyThread(String name, Lock lock) {
super(name);
this.lock = lock;
}
public void run () {
lock.lock();
try {
System.out.println(Thread.currentThread() + " running");
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
} finally {
lock.unlock();
}
}
}
public class AbstractQueuedSynchonizerDemo {
public static void main(String[] args) throws InterruptedException {
Lock lock = new ReentrantLock(true);
MyThread t1 = new MyThread("t1", lock);
MyThread t2 = new MyThread("t2", lock);
MyThread t3 = new MyThread("t3", lock);
t1.start();
t2.start();
t3.start();
}
}
运行结果如下:
Thread[t1,5,main] running
Thread[t2,5,main] running
Thread[t3,5,main] running
说明:该示例使用的是公平策略,由结果可知,可能会存在如下一种时序。
说明:首先,t1线程的lock操作 -> t2线程的lock操作 -> t3线程的lock操作 -> t1线程的unlock操作 -> t2线程的unlock操作 -> t3线程的unlock操作。根据这个时序图来进一步分析源码的工作流程。
① t1线程执行lock.lock,下图给出了方法调用中的主要方法。
说明:由调用流程可知,t1线程成功获取了资源,可以继续执行。
② t2线程执行lock.lock,下图给出了方法调用中的主要方法。
说明:由上图可知,最后的结果是t2线程会被禁止,因为调用了LockSupport.park。
③ t3线程执行lock.lock,下图给出了方法调用中的主要方法。
说明:由上图可知,最后的结果是t3线程会被禁止,因为调用了LockSupport.park。
④ t1线程调用了lock.unlock,下图给出了方法调用中的主要方法。
说明:如上图所示,最后,head的状态会变为0,t2线程会被unpark,即t2线程可以继续运行。此时t3线程还是被禁止。
⑤ t2获得cpu资源,继续运行,由于t2之前被park了,现在需要恢复之前的状态,下图给出了方法调用中的主要方法。
说明:在setHead函数中会将head设置为之前head的下一个结点,并且将pre域与thread域都设置为null,在acquireQueued返回之前,sync queue就只有两个结点了。
⑥ t2执行lock.unlock,下图给出了方法调用中的主要方法。
说明:在setHead函数中会将head设置为之前head的下一个结点,并且将pre域与thread域都设置为null,在acquireQueued返回之前,sync queue就只有两个结点了。
⑥ t2执行lock.unlock,下图给出了方法调用中的主要方法。
说明:由上图可知,最终unpark t3线程,让t3线程可以继续运行。
⑦ t3线程获取cpu资源,恢复之前的状态,继续运行。
说明:最终达到的状态是sync queue中只剩下了一个结点,并且该节点除了状态为0外,其余均为null。
⑧ t3执行lock.unlock,下图给出了方法调用中的主要方法。
说明:最后的状态和之前的状态是一样的,队列中有一个空节点,头结点为尾节点均指向它。
使用公平策略和Condition的情况可以参考上一篇关于AQS的源码示例分析部分,不再累赘。