深入理解ReentrantLock原理

                                             深入理解ReentrantLock原理

一、前言
  我们在分析ReentrantLock源码之前最好先了解AQS,因为ReentrantLock是基于AQS实现的。AQS源码分析在之前的博客已经进行了深入分析。传送门:深入理解AQS(AbstractQueuedSynchronizer)

二、ReentrantLock数据结构
  ReentrantLock的底层是借助AbstractQueuedSynchronizer实现,所以其数据结构依附于AbstractQueuedSynchronizer的数据结构,关于AQS的数据结构,在前一篇已经介绍过,不再累赘。

三、ReentrantLock源码分析
3.1 类的继承关系

public class ReentrantLock implements Lock, java.io.Serializable

说明:ReentrantLock实现了Lock接口,Lock接口中定义了lock与unlock相关操作,并且还存在newCondition方法,表示生成一个条件。

3.2 类的内部类

ReentrantLock总共有三个内部类,并且三个内部类是紧密相关的,下面先看三个类的关系。

深入理解ReentrantLock原理_第1张图片

说明:ReentrantLock类内部总共存在Sync、NonfairSync、FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自AbstractQueuedSynchronizer抽象类。下面逐个进行分析。

(1)Sync类的源码如下:

abstract static class Sync extends AbstractQueuedSynchronizer {
        // 序列号
        private static final long serialVersionUID = -5179523762034025860L;
        
        // 获取锁
        abstract void lock();
        
        // 非公平方式获取
        final boolean nonfairTryAcquire(int acquires) {
            // 当前线程
            final Thread current = Thread.currentThread();
            // 获取状态
            int c = getState();
            if (c == 0) { // 表示没有线程正在竞争该锁
                if (compareAndSetState(0, acquires)) { // 比较并设置状态成功,状态0表示锁没有被占用
                    // 设置当前线程独占
                    setExclusiveOwnerThread(current); 
                    return true; // 成功
                }
            }
            else if (current == getExclusiveOwnerThread()) { // 当前线程拥有该锁
                int nextc = c + acquires; // 增加重入次数
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                // 设置状态
                setState(nextc); 
                // 成功
                return true; 
            }
            // 失败
            return false;
        }
        
        // 试图在共享模式下获取对象状态,此方法应该查询是否允许它在共享模式下获取对象状态,如果允许,则获取它
        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread()) // 当前线程不为独占线程
                throw new IllegalMonitorStateException(); // 抛出异常
            // 释放标识
            boolean free = false; 
            if (c == 0) {
                free = true;
                // 已经释放,清空独占
                setExclusiveOwnerThread(null); 
            }
            // 设置标识
            setState(c); 
            return free; 
        }
        
        // 判断资源是否被当前线程占有
        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }
 
        // 新生一个条件
        final ConditionObject newCondition() {
            return new ConditionObject();
        }
 
        // Methods relayed from outer class
        // 返回资源的占用线程
        final Thread getOwner() {        
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }
        // 返回状态
        final int getHoldCount() {            
            return isHeldExclusively() ? getState() : 0;
        }
 
        // 资源是否被占用
        final boolean isLocked() {        
            return getState() != 0;
        }
 
        /**
         * Reconstitutes the instance from a stream (that is, deserializes it).
         */
        // 自定义反序列化逻辑
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

说明:Sync类存在如下方法和作用如下:

深入理解ReentrantLock原理_第2张图片

(2).NonfairSync类
NonfairSync类继承了Sync类,表示采用非公平策略获取锁,其实现了Sync类中抽象的lock方法,源码如下:

// 非公平锁
    static final class NonfairSync extends Sync {
        // 版本号
        private static final long serialVersionUID = 7316153563782823691L;
 
        // 获得锁
        final void lock() {
            if (compareAndSetState(0, 1)) // 比较并设置状态成功,状态0表示锁没有被占用
                // 把当前线程设置独占了锁
                setExclusiveOwnerThread(Thread.currentThread());
            else // 锁已经被占用,或者set失败
                // 以独占模式获取对象,忽略中断
                acquire(1); 
        }
 
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

说明:从lock方法的源码可知,每一次都尝试获取锁,而并不会按照公平等待的原则进行等待,让等待时间最久的线程获得锁。(3)FairSyn类
FairSync类也继承了Sync类,表示采用公平策略获取锁,其实现了Sync类中的抽象lock方法,源码如下:

static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;
 
        final void lock() {
            acquire(1);
        }
 
        /**
         * 尝试获取独占锁. 两种情况:
         *  1. 锁未被占用(state = 0 )
         *    如果等待队列为空 或当前线程时等待队列首个出队线程 则尝试获取锁.
         *  2. 锁被占用(state != 0)
         *    校验当前线程是否已经拥有独占锁,如果是,则记录重入次数。
         * @param acquires
         * @return
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }
//是否有其他线程先于当前线程等待获取锁,即判断队列中是否有前驱节点
public final boolean hasQueuedPredecessors() {
    // The correctness of this depends on head being initialized
    // before tail and on head.next being accurate if the current
    // thread is first in queue.
    Node t = tail; // Read fields in reverse initialization order
    Node h = head;
    Node s;
    return h != t &&
        ((s = h.next) == null || s.thread != Thread.currentThread());
    //1)如果h==t成立,队列为空,无前驱节点,返回false。
    //2)如果h!=t成立,从head节点的next是否为null,如果为null,返回true。什么情况下h!=t的同时h.next==null??,
    //有其他线程第一次正在入队时,可能会出现。见AQS的enq方法,compareAndSetHead(node)完成,还没执行tail = head语句时,此时tail=null,head=newNode,head.next-null。
    //3)如果h!=t成立,从head节点的next是否不为null,则判断是否是当前线程,如果是返回false,否则有前驱节点,返回true
}

说明:跟踪lock方法的源码可知,当资源空闲时,它总是会先判断sync队列(AbstractQueuedSynchronizer中的数据结构)是否有等待时间更长的线程,如果存在,则将该线程加入到等待队列的尾部,实现了公平获取原则。其中,FairSync类的lock的方法调用如下,只给出了主要的方法。
深入理解ReentrantLock原理_第3张图片

说明:可以看出只要资源被其他线程占用,该线程就会添加到sync queue中的尾部,而不会先尝试获取资源。这也是和Nonfair最大的区别,Nonfair每一次都会尝试去获取资源,如果此时该资源恰好被释放,则会被当前线程获取,这就造成了不公平的现象,当获取不成功,再加入队列尾部。

3.3 类的属性

public class ReentrantLock implements Lock, java.io.Serializable {
    // 序列号
    private static final long serialVersionUID = 7373984872572414699L;    
    // 同步队列
    private final Sync sync;
}

说明:ReentrantLock类的sync非常重要,对ReentrantLock类的操作大部分都直接转化为对Sync和AbstractQueuedSynchronizer类的操作

3.4 类的构造函数

(1). ReentrantLock()型构造函数

public ReentrantLock() {
        // 默认非公平策略
        sync = new NonfairSync();
}

说明:可以看到默认是采用的非公平策略获取锁。

(2).ReentrantLock(boolean)型构造函数

public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
}

说明:可以传递参数确定采用公平策略或者是非公平策略,参数为true表示公平策略,否则,采用非公平策略.

3.5 核心函数分析

  通过分析ReentrantLock的源码,可知对其操作都转化为对Sync对象的操作,由于Sync继承了AQS,所以基本上都可以转化为对AQS的操作。如将ReentrantLock的lock函数转化为对Sync的lock函数的调用,而具体会根据采用的策略(如公平策略或者非公平策略)的不同而调用到Sync的不同子类。

  所以可知,在ReentrantLock的背后,是AQS对其服务提供了支持,由于之前我们分析AQS的核心源码,遂不再累赘。下面还是通过例子来更进一步分析源码。

四、示例分析

4.1 公平锁

package com.hust.grid.leesf.abstractqueuedsynchronizer;
 
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
class MyThread extends Thread {
    private Lock lock;
    public MyThread(String name, Lock lock) {
        super(name);
        this.lock = lock;
    }
    
    public void run () {
        lock.lock();
        try {
            System.out.println(Thread.currentThread() + " running");
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        } finally {
            lock.unlock();
        }
    }
}
 
public class AbstractQueuedSynchonizerDemo {
    public static void main(String[] args) throws InterruptedException {
        Lock lock = new ReentrantLock(true);
        
        MyThread t1 = new MyThread("t1", lock);        
        MyThread t2 = new MyThread("t2", lock);
        MyThread t3 = new MyThread("t3", lock);
        t1.start();
        t2.start();    
        t3.start();
    }
}

 运行结果如下:

Thread[t1,5,main] running
Thread[t2,5,main] running
Thread[t3,5,main] running

说明:该示例使用的是公平策略,由结果可知,可能会存在如下一种时序。

深入理解ReentrantLock原理_第4张图片

说明:首先,t1线程的lock操作 -> t2线程的lock操作 -> t3线程的lock操作 -> t1线程的unlock操作 -> t2线程的unlock操作 -> t3线程的unlock操作。根据这个时序图来进一步分析源码的工作流程。

① t1线程执行lock.lock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第5张图片

说明:由调用流程可知,t1线程成功获取了资源,可以继续执行。

② t2线程执行lock.lock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第6张图片

说明:由上图可知,最后的结果是t2线程会被禁止,因为调用了LockSupport.park。

  ③ t3线程执行lock.lock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第7张图片

说明:由上图可知,最后的结果是t3线程会被禁止,因为调用了LockSupport.park。

  ④ t1线程调用了lock.unlock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第8张图片

说明:如上图所示,最后,head的状态会变为0,t2线程会被unpark,即t2线程可以继续运行。此时t3线程还是被禁止。

  ⑤ t2获得cpu资源,继续运行,由于t2之前被park了,现在需要恢复之前的状态,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第9张图片

说明:在setHead函数中会将head设置为之前head的下一个结点,并且将pre域与thread域都设置为null,在acquireQueued返回之前,sync queue就只有两个结点了。

  ⑥ t2执行lock.unlock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第10张图片

说明:在setHead函数中会将head设置为之前head的下一个结点,并且将pre域与thread域都设置为null,在acquireQueued返回之前,sync queue就只有两个结点了。

  ⑥ t2执行lock.unlock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第11张图片

说明:由上图可知,最终unpark t3线程,让t3线程可以继续运行。

  ⑦ t3线程获取cpu资源,恢复之前的状态,继续运行。

深入理解ReentrantLock原理_第12张图片

说明:最终达到的状态是sync queue中只剩下了一个结点,并且该节点除了状态为0外,其余均为null。

  ⑧ t3执行lock.unlock,下图给出了方法调用中的主要方法。

深入理解ReentrantLock原理_第13张图片

说明:最后的状态和之前的状态是一样的,队列中有一个空节点,头结点为尾节点均指向它。

  使用公平策略和Condition的情况可以参考上一篇关于AQS的源码示例分析部分,不再累赘。

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(并发编程剖析)