Coin 2017 西安网络赛 快速幂 + 二项式定理

题目链接


Bob has a not even coin, every time he tosses the coin, the probability that the coin’s front face up is qp(qp12)qp(qp12)pq(pq21).

The question is, when Bob tosses the coin kkk times, what’s the probability that the frequency of the coin facing up is even number.

If the answer is XY ​​, because the answer could be extremely large, you only need to print (XY1)mod(109+7)(XY1)mod(109+7)(XY1)mod(109+7).

Input Format

First line an integer T, indicates the number of test cases (T100T100T100).

Then Each line has 333 integer p,q,k(1≤p,q,k≤107)p,q,k(1\le p,q,k \le 10^7)p,q,k(1≤p,q,k≤10​7​​) indicates the i-th test case.

Output Format

For each test case, print an integer in a single line indicates the answer.


题意:

给你一枚不均匀的硬币, 正面朝上的概率是 q / p;现在扔 k 次, 求正面朝上次数为偶数次的概率。

思路:

计算方式类似于二项分布的概率的计算, 可以得出 ki=0C(k,i)(qp)i(1qp)kii , 观察式子我们发现分母岁固定的 : pk , 分子是二项式的偶数项, 至于计算二项式的偶数项就很简单了 即是, qk+(p2q)k2 ,最后就是除法逆元了,

代码:

#include
#include
#include
#include
#include
#include
using namespace std;

typedef long long LL;
const int maxn = 1;
const double eps = 1e-7;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;

LL qpow(LL x, LL n){
    x %= mod;
    LL ans = 1;
    while(n){
        if(n&1) ans = ans * x % mod;
        x = x * x % mod;
        n >>= 1;
    }return ans;
}

int main(){
    int t, k, p, q;
    scanf("%d", &t);
    while(t--){
        scanf("%d %d %d", &p, &q, &k);
        LL t = qpow(p, k);
        LL tt = (qpow(p, k) + qpow( p - 2 * q, k)) % mod;
        LL ans = tt * qpow(t * 2, mod -2) % mod;
        printf("%lld\n", (ans % mod +mod) % mod);
    }
    return 0;
}

你可能感兴趣的:(算法之数学)