Introdution to 3D Game Programming With DirectX11 第11章 习题解答

11.1

 这道题要注意使用了line strip,因为以前一直用triangle list,所以在几何渲染的时候容易算错定点描绘的顺序。

贴一些代码,大概就能把这个问题解释清楚了,因为框架还不是特别熟,所以是在原有例子的基础上建立的自己的代码

void TreeBillboardApp::BuildCircleBuffers()
{
	//
	//Create the vertex buffer
	//
	std::vector vertices(32);
	for (int i = 0; i < 32; i++)
	{
		vertices[i].Pos.x = cosf(MathHelper::Pi * i / 16);
		vertices[i].Pos.y = 0;
		vertices[i].Pos.z = sinf(MathHelper::Pi * i / 16);

		XMVECTOR p = XMLoadFloat3(&vertices[i].Pos);
		XMStoreFloat3(&vertices[i].Normal, XMVector3Normalize(p));

		vertices[i].Tex.x = i / 32;
		vertices[i].Tex.y = 0;
	}

	D3D11_BUFFER_DESC vbd;
	vbd.Usage = D3D11_USAGE_IMMUTABLE;
	vbd.ByteWidth = sizeof(Vertex::Basic32) * 32;
	vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
	vbd.CPUAccessFlags = 0;
	vbd.MiscFlags = 0;
	vbd.StructureByteStride = 0;
	D3D11_SUBRESOURCE_DATA vinitData;
	vinitData.pSysMem = &vertices[0];
	HR(md3dDevice->CreateBuffer(&vbd, &vinitData, &mCircleVB));

	//
	//Create the index buffer
	//

	UINT indices[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
					10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
					20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 
					30, 31, 0 };

	D3D11_BUFFER_DESC ibd;
	ibd.Usage = D3D11_USAGE_IMMUTABLE;
	ibd.ByteWidth = sizeof(UINT)* 33;
	ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
	ibd.CPUAccessFlags = 0;
	ibd.MiscFlags = 0;
	ibd.StructureByteStride = 0;
	D3D11_SUBRESOURCE_DATA iinitData;
	iinitData.pSysMem = indices;
	HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mCircleIB));
}

void TreeBillboardApp::DrawCircle(CXMMATRIX viewProj)
{
	//--------------------------------------------------------------------------
	//
	//Draw the circle
	//
	// Set per object constants.
	XMMATRIX world = XMLoadFloat4x4(&mCircleWorld);
	XMMATRIX worldInvTranspose = MathHelper::InverseTranspose(world);
	XMMATRIX worldViewProj = world*viewProj;

	Effects::CircleFX->SetWorld(world);
	Effects::CircleFX->SetWorldInvTranspose(worldInvTranspose);
	Effects::CircleFX->SetWorldViewProj(worldViewProj);
	Effects::CircleFX->SetTexTransform(XMMatrixIdentity());
	Effects::CircleFX->SetMaterial(mBoxMat);
	Effects::CircleFX->SetDiffuseMap(mBoxMapSRV);
	Effects::CircleFX->SetDirLights(mDirLights);
	Effects::CircleFX->SetEyePosW(mEyePosW);
	Effects::CircleFX->SetFogColor(Colors::Silver);
	Effects::CircleFX->SetFogStart(15.0f);
	Effects::CircleFX->SetFogRange(175.0f);

	md3dImmediateContext->IASetInputLayout(InputLayouts::Basic32);
	md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP);

	md3dImmediateContext->RSSetState(RenderStates::WireframeRS);

	UINT stride1 = sizeof(Vertex::Basic32);
	UINT offset1 = 0;
	md3dImmediateContext->IASetVertexBuffers(0, 1, &mCircleVB, &stride1, &offset1);
	md3dImmediateContext->IASetIndexBuffer(mCircleIB, DXGI_FORMAT_R32_UINT, 0);

	ID3DX11EffectTechnique* circleTech;
	D3DX11_TECHNIQUE_DESC techDesc;

	switch (mRenderOptions)
	{
	case RenderOptions::Lighting:
		circleTech = Effects::CircleFX->Light3Tech;
		break;
	case RenderOptions::Textures:
		circleTech = Effects::CircleFX->Light3TexAlphaClipTech;
		break;
	case RenderOptions::TexturesAndFog:
		circleTech = Effects::CircleFX->Light3TexAlphaClipFogTech;
		break;
	}

	circleTech->GetDesc(&techDesc);

	for (UINT p = 0; p < techDesc.Passes; ++p)
	{
		//md3dImmediateContext->OMSetBlendState(RenderStates::AlphaToCoverageBS, blendFactor, 0xffffffff);
		md3dImmediateContext->RSSetState(RenderStates::NoCullRS);
		circleTech->GetPassByIndex(p)->Apply(0, md3dImmediateContext);
		md3dImmediateContext->DrawIndexed(33, 0, 0);

		// Restore default render state.
		md3dImmediateContext->RSSetState(0);
	}
}

还专给那个circle单写了fx,请无视那注释

//=============================================================================
// Basic.fx by Frank Luna (C) 2011 All Rights Reserved.
//
// Basic effect that currently supports transformations, lighting, and texturing.
//=============================================================================

#include "LightHelper.fx"

cbuffer cbPerFrame
{
	DirectionalLight gDirLights[3];
	float3 gEyePosW;

	float  gFogStart;
	float  gFogRange;
	float4 gFogColor;
};

cbuffer cbPerObject
{
	float4x4 gWorld;
	float4x4 gWorldInvTranspose;
	float4x4 gWorldViewProj;
	float4x4 gTexTransform;
	Material gMaterial;
};

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gDiffuseMap;

SamplerState samAnisotropic
{
	Filter = ANISOTROPIC;
	MaxAnisotropy = 4;

	AddressU = WRAP;
	AddressV = WRAP;
};

struct VertexIn
{
	float3 PosL    : POSITION;
	float3 NormalL : NORMAL;
	float2 Tex     : TEXCOORD;
};

struct VertexOut
{
	float4 PosH    : SV_POSITION;
	float3 PosW    : POSITION;
	float3 NormalW : NORMAL;
	float2 Tex     : TEXCOORD;
};

struct GeoOut
{
	float4 PosH    : SV_POSITION;
	float3 PosW    : POSITION;
	float3 NormalW : NORMAL;
	float2 Tex     : TEXCOORD;
	uint   PrimID  : SV_PrimitiveID;
};

VertexOut VS(VertexIn vin)
{
	VertexOut vout;

	// Transform to world space space.
	vout.PosW = mul(float4(vin.PosL, 1.0f), gWorld).xyz;
	vout.NormalW = mul(vin.NormalL, (float3x3)gWorldInvTranspose);

	// Transform to homogeneous clip space.
	vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj);

	// Output vertex attributes for interpolation across triangle.
	vout.Tex = mul(float4(vin.Tex, 0.0f, 1.0f), gTexTransform).xy;

	return vout;
}

[maxvertexcount(4)]
void GS(line VertexOut gin[2],
	uint primID : SV_PrimitiveID,
	inout TriangleStream triStream)
{
	//
	// Compute the local coordinate system of the sprite relative to the world
	// space such that the billboard is aligned with the y-axis and faces the eye.
	//

	float3 up = float3(0.0f, 5.0f, 0.0f);
		//float3 look = gEyePosW - gin[0].CenterW;
		//look.y = 0.0f; // y-axis aligned, so project to xz-plane
	//look = normalize(look);
	//float3 right = cross(up, look);

		//
		// Compute triangle strip vertices (quad) in world space.
		//
		//float halfWidth = 0.5f*gin[0].SizeW.x;
	//float halfHeight = 0.5f*gin[0].SizeW.y;

	float4 v[4];
	v[0] = float4(gin[0].PosW, 1.0f);
	v[1] = float4(gin[0].PosW + up, 1.0f);
	v[2] = float4(gin[1].PosW, 1.0f);
	v[3] = float4(gin[1].PosW + up, 1.0f);

	float3 n[4];
	n[0] = gin[0].NormalW;
	n[1] = gin[0].NormalW;
	n[2] = gin[1].NormalW;
	n[3] = gin[1].NormalW;

	float2 t[4];
	t[0] = gin[0].Tex;
	t[1].x = gin[0].Tex.x;
	t[1].y = 1.0f;
 	t[2] = gin[1].Tex;
	t[3].x = gin[1].Tex.x;
	t[3].y = 1.0f;


	//
	// Transform quad vertices to world space and output 
	// them as a triangle strip.
	//
	GeoOut gout;
	[unroll]
	for (int i = 0; i < 4; ++i)
	{
		gout.PosH = mul(v[i], gWorldViewProj);
		gout.PosW = v[i].xyz;
		gout.NormalW = n[i].xyz;
		gout.Tex = t[i].xy;
		gout.PrimID = primID;

		triStream.Append(gout);
	}
}

float4 PS(GeoOut pin, uniform int gLightCount, uniform bool gUseTexure, uniform bool gAlphaClip, uniform bool gFogEnabled) : SV_Target
{
	// Interpolating normal can unnormalize it, so normalize it.
	pin.NormalW = normalize(pin.NormalW);

	// The toEye vector is used in lighting.
	float3 toEye = gEyePosW - pin.PosW;

		// Cache the distance to the eye from this surface point.
		float distToEye = length(toEye);

	// Normalize.
	toEye /= distToEye;

	// Default to multiplicative identity.
	//float3 uvw = float3(pin.Tex, pin.PrimID % 4);
	float4 texColor = float4(1, 1, 1, 1);
	if (gUseTexure)
	{
		// Sample texture.
		texColor = gDiffuseMap.Sample(samAnisotropic, pin.Tex);

		if (gAlphaClip)
		{
			// Discard pixel if texture alpha < 0.1.  Note that we do this
			// test as soon as possible so that we can potentially exit the shader 
			// early, thereby skipping the rest of the shader code.
			clip(texColor.a - 0.1f);
		}
	}

	//
	// Lighting.
	//

	float4 litColor = texColor;
	if (gLightCount > 0)
	{
		// Start with a sum of zero.
		float4 ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
			float4 diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
			float4 spec = float4(0.0f, 0.0f, 0.0f, 0.0f);

			// Sum the light contribution from each light source.  
			[unroll]
		for (int i = 0; i < gLightCount; ++i)
		{
			float4 A, D, S;
			ComputeDirectionalLight(gMaterial, gDirLights[i], pin.NormalW, toEye,
				A, D, S);

			ambient += A;
			diffuse += D;
			spec += S;
		}

		// Modulate with late add.
		litColor = texColor*(ambient + diffuse) + spec;
	}

	//
	// Fogging
	//

	if (gFogEnabled)
	{
		float fogLerp = saturate((distToEye - gFogStart) / gFogRange);

		// Blend the fog color and the lit color.
		litColor = lerp(litColor, gFogColor, fogLerp);
	}

	// Common to take alpha from diffuse material and texture.
	litColor.a = gMaterial.Diffuse.a * texColor.a;

	return litColor;
}

technique11 Light1
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, false, false, false)));
	}
}

technique11 Light2
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(2, false, false, false)));
	}
}

technique11 Light3
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(3, false, false, false)));
	}
}

technique11 Light0Tex
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(0, true, false, false)));
	}
}

technique11 Light1Tex
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, true, false, false)));
	}
}

technique11 Light2Tex
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(2, true, false, false)));
	}
}

technique11 Light3Tex
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader(gs_5_0, GS()));
		SetPixelShader(CompileShader(ps_5_0, PS(3, true, false, false)));
	}
}

technique11 Light0TexAlphaClip
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(0, true, true, false)));
	}
}

technique11 Light1TexAlphaClip
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, true, true, false)));
	}
}

technique11 Light2TexAlphaClip
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(2, true, true, false)));
	}
}

technique11 Light3TexAlphaClip
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(3, true, true, false)));
	}
}

technique11 Light1Fog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, false, false, true)));
	}
}

technique11 Light2Fog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader(gs_5_0, GS()));
		SetPixelShader(CompileShader(ps_5_0, PS(2, false, false, true)));
	}
}

technique11 Light3Fog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(3, false, false, true)));
	}
}

technique11 Light0TexFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(0, true, false, true)));
	}
}

technique11 Light1TexFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, true, false, true)));
	}
}

technique11 Light2TexFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(2, true, false, true)));
	}
}

technique11 Light3TexFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(3, true, false, true)));
	}
}

technique11 Light0TexAlphaClipFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(0, true, true, true)));
	}
}

technique11 Light1TexAlphaClipFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(1, true, true, true)));
	}
}

technique11 Light2TexAlphaClipFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(2, true, true, true)));
	}
}

technique11 Light3TexAlphaClipFog
{
	pass P0
	{
		SetVertexShader(CompileShader(vs_5_0, VS()));
		SetGeometryShader(CompileShader( gs_5_0, GS() ));
		SetPixelShader(CompileShader(ps_5_0, PS(3, true, true, true)));
	}
}

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第1张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第2张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第3张图片


11.2 

Basic.fx
#include "LightHelper.fx"
 
cbuffer cbPerFrame
{
	DirectionalLight gDirLights[3];
	float3 gEyePosW;

	float  gFogStart;
	float  gFogRange;
	float4 gFogColor;
};

cbuffer cbPerObject
{
	float4x4 gWorld;
	float4x4 gWorldInvTranspose;
	float4x4 gWorldViewProj;
	float4x4 gTexTransform;
	Material gMaterial;
};

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gDiffuseMap;

SamplerState samAnisotropic
{
	Filter = ANISOTROPIC;
	MaxAnisotropy = 4;

	AddressU = WRAP;
	AddressV = WRAP;
};

struct VertexIn
{
	float3 PosL    : POSITION;
	float3 NormalL : NORMAL;
	float2 Tex     : TEXCOORD;
};

struct VertexOut
{
    float3 PosL    : POSITION;
    float3 NormalL : NORMAL;
    float2 Tex     : TEXCOORD;
};

struct GeoOut
{
    float4 PosH    : SV_POSITION;
    float3 PosW    : POSITION;
    float3 NormalW : NORMAL;
    float2 Tex     : TEXCOORD;
    float  FogLerp : FOG;
};

VertexOut VS(VertexIn vin)
{
    VertexOut vout;

    vout.PosL    = vin.PosL;
    vout.NormalL = vin.NormalL;
    vout.Tex     = vin.Tex;

    return vout;
}

void SubdivideZero(VertexOut inVerts[3], out VertexOut outVerts[3])
{
    outVerts[0] = inVerts[0];
    outVerts[1] = inVerts[1];
    outVerts[2] = inVerts[2];
}
 
void Subdivide(VertexOut inVerts[3], out VertexOut outVerts[6])
{
    VertexOut m[3];

    // Compute edge midpoints.
    m[0].PosL = 0.5f*(inVerts[0].PosL + inVerts[1].PosL);
    m[1].PosL = 0.5f*(inVerts[1].PosL + inVerts[2].PosL);
    m[2].PosL = 0.5f*(inVerts[2].PosL + inVerts[0].PosL);

    // Project onto unit sphere
    m[0].PosL = normalize(m[0].PosL);
    m[1].PosL = normalize(m[1].PosL);
    m[2].PosL = normalize(m[2].PosL);

    // Derive normals.
    m[0].NormalL = m[0].PosL;
    m[1].NormalL = m[1].PosL;
    m[2].NormalL = m[2].PosL;

    // Interpolate texture coordinates.
    m[0].Tex = 0.5f*(inVerts[0].Tex + inVerts[1].Tex);
    m[1].Tex = 0.5f*(inVerts[1].Tex + inVerts[2].Tex);
    m[2].Tex = 0.5f*(inVerts[2].Tex + inVerts[0].Tex);

    outVerts[0] = inVerts[0];
    outVerts[1] = m[0];
    outVerts[2] = m[2];
    outVerts[3] = m[1];
    outVerts[4] = inVerts[2];
    outVerts[5] = inVerts[1];
}

void SubdivideTwice(VertexOut inVerts[3], out VertexOut outVerts[15])
{
    VertexOut m[12];

    // Compute edge midpoints.
    m[0].PosL = 0.75f * inVerts[0].PosL + 0.25 * inVerts[2].PosL;
    m[1].PosL = 0.5f  * inVerts[0].PosL + 0.5  * inVerts[2].PosL;
    m[2].PosL = 0.25f * inVerts[0].PosL + 0.75 * inVerts[2].PosL;
    m[3].PosL = 0.75f * inVerts[2].PosL + 0.25 * inVerts[1].PosL;
    m[4].PosL = 0.5f  * inVerts[2].PosL + 0.5  * inVerts[1].PosL;
    m[5].PosL = 0.25f * inVerts[2].PosL + 0.75 * inVerts[1].PosL;
    m[6].PosL = 0.75f * inVerts[1].PosL + 0.25 * inVerts[0].PosL;
    m[7].PosL = 0.5f  * inVerts[1].PosL + 0.5  * inVerts[0].PosL;
    m[8].PosL = 0.25f * inVerts[1].PosL + 0.75 * inVerts[0].PosL;
    m[9].PosL = 0.5f  * m[4].PosL       + 0.5  * m[7].PosL;
    m[10].PosL = 0.5f * m[1].PosL       + 0.5  * m[7].PosL;
    m[11].PosL = 0.5f * m[1].PosL       + 0.5  * m[4].PosL;

    // Project onto unit sphere
    m[0].PosL = normalize(m[0].PosL);
    m[1].PosL = normalize(m[1].PosL);
    m[2].PosL = normalize(m[2].PosL);
    m[3].PosL = normalize(m[3].PosL);
    m[4].PosL = normalize(m[4].PosL);
    m[5].PosL = normalize(m[5].PosL);
    m[6].PosL = normalize(m[6].PosL);
    m[7].PosL = normalize(m[7].PosL);
    m[8].PosL = normalize(m[8].PosL);
    m[9].PosL = normalize(m[9].PosL);
    m[10].PosL = normalize(m[10].PosL);
    m[11].PosL = normalize(m[11].PosL);

    // Derive normals.
    m[0].NormalL = m[0].PosL;
    m[1].NormalL = m[1].PosL;
    m[2].NormalL = m[2].PosL;
    m[3].NormalL = m[3].PosL;
    m[4].NormalL = m[4].PosL;
    m[5].NormalL = m[5].PosL;
    m[6].NormalL = m[6].PosL;
    m[7].NormalL = m[7].PosL;
    m[8].NormalL = m[8].PosL;
    m[9].NormalL = m[9].PosL;
    m[10].NormalL = m[10].PosL;
    m[11].NormalL = m[11].PosL;

    // Interpolate texture coordinates.
    m[0].Tex = 0.75f * inVerts[0].Tex + 0.25 * inVerts[2].Tex;
    m[1].Tex = 0.5f  * inVerts[0].Tex + 0.5  * inVerts[2].Tex;
    m[2].Tex = 0.25f * inVerts[0].Tex + 0.75 * inVerts[2].Tex;
    m[3].Tex = 0.75f * inVerts[2].Tex + 0.25 * inVerts[1].Tex;
    m[4].Tex = 0.5f  * inVerts[2].Tex + 0.5  * inVerts[1].Tex;
    m[5].Tex = 0.25f * inVerts[2].Tex + 0.75 * inVerts[1].Tex;
    m[6].Tex = 0.75f * inVerts[1].Tex + 0.25 * inVerts[0].Tex;
    m[7].Tex = 0.5f  * inVerts[1].Tex + 0.5  * inVerts[0].Tex;
    m[8].Tex = 0.25f * inVerts[1].Tex + 0.75 * inVerts[0].Tex;
    m[9].Tex = 0.5f  * m[4].Tex + 0.5  * m[7].Tex;
    m[10].Tex = 0.5f * m[1].Tex + 0.5  * m[7].Tex;
    m[11].Tex = 0.5f * m[1].Tex + 0.5  * m[4].Tex;

    outVerts[0] = inVerts[0];
    outVerts[1] = m[0];
    outVerts[2] = m[1];
    outVerts[3] = m[2];
    outVerts[4] = inVerts[2];
    outVerts[5] = m[3];
    outVerts[6] = m[4];
    outVerts[7] = m[5];
    outVerts[8] = inVerts[1];
    outVerts[9] = m[6];
    outVerts[10] = m[7];
    outVerts[11] = m[8];
    outVerts[12] = m[9];
    outVerts[13] = m[10];
    outVerts[14] = m[11];
}

void OutputSubdivisionZero(VertexOut v[3], inout TriangleStream triStream)
{
    GeoOut gout[3];

    [unroll]
    for (int i = 0; i < 3; ++i)
    {
        // Transorm to world space space.
        gout[i].PosW = mul(float4(v[i].PosL, 1.0f), gWorld).xyz;
        gout[i].NormalW = mul(v[i].NormalL, (float3x3)gWorldInvTranspose);

        // Transform to homogeneous clip space.
        gout[i].PosH = mul(float4(v[i].PosL, 1.0f), gWorldViewProj);

        gout[i].Tex = v[i].Tex;
    }

    [unroll]
    for (int j = 0; j < 3; ++j)
    {
        triStream.Append(gout[j]);
    }
}

void OutputSubdivision(VertexOut v[6], inout TriangleStream triStream)
{
    GeoOut gout[6];

    [unroll]
    for (int i = 0; i < 6; ++i)
    {
        // Transorm to world space space.
        gout[i].PosW = mul(float4(v[i].PosL, 1.0f), gWorld).xyz;
        gout[i].NormalW = mul(v[i].NormalL, (float3x3)gWorldInvTranspose);

        // Transform to homogeneous clip space.
        gout[i].PosH = mul(float4(v[i].PosL, 1.0f), gWorldViewProj);

        gout[i].Tex = v[i].Tex;
    }

    [unroll]
    for (int j = 0; j < 5; ++j)
    {
        triStream.Append(gout[j]);
    }
    triStream.RestartStrip();

    triStream.Append(gout[1]);
    triStream.Append(gout[5]);
    triStream.Append(gout[3]);
}

void OutputSubdivisionTwice(VertexOut v[15], inout TriangleStream triStream)
{
    GeoOut gout[15];

    [unroll]
    for (int i = 0; i < 15; ++i)
    {
        // Transorm to world space space.
        gout[i].PosW = mul(float4(v[i].PosL, 1.0f), gWorld).xyz;
        gout[i].NormalW = mul(v[i].NormalL, (float3x3)gWorldInvTranspose);

        // Transform to homogeneous clip space.
        gout[i].PosH = mul(float4(v[i].PosL, 1.0f), gWorldViewProj);

        gout[i].Tex = v[i].Tex;
    }

    triStream.Append(gout[0]);
    triStream.Append(gout[11]);
    triStream.Append(gout[1]);
    triStream.Append(gout[13]);
    triStream.Append(gout[2]);
    triStream.Append(gout[14]);
    triStream.Append(gout[3]);
    triStream.Append(gout[5]);
    triStream.Append(gout[4]);

    triStream.RestartStrip();

    triStream.Append(gout[11]); 
    triStream.Append(gout[10]);
    triStream.Append(gout[13]);
    triStream.Append(gout[12]);
    triStream.Append(gout[14]);
    triStream.Append(gout[6]);
    triStream.Append(gout[5]);

    triStream.RestartStrip();

    triStream.Append(gout[10]);
    triStream.Append(gout[9]);
    triStream.Append(gout[12]);
    triStream.Append(gout[7]);
    triStream.Append(gout[6]);

    triStream.RestartStrip();

    triStream.Append(gout[9]);
    triStream.Append(gout[8]);
    triStream.Append(gout[7]);

}

[maxvertexcount(24)]
void GS(triangle VertexOut gin[3], inout TriangleStream triStream)
{

    if (length(gEyePosW) >= 30)
    {
        VertexOut v[3];
        SubdivideZero(gin, v);
        OutputSubdivisionZero(v, triStream);
    }
    else if ((length(gEyePosW) >= 15))
    {
        VertexOut v[6];
        Subdivide(gin, v);
        OutputSubdivision(v, triStream);
    }else
    {
        VertexOut v[15];
        SubdivideTwice(gin, v);
        OutputSubdivisionTwice(v, triStream);
    }
}

float4 PS(GeoOut pin, uniform int gLightCount, uniform bool gUseTexure, uniform bool gAlphaClip, uniform bool gFogEnabled) : SV_Target
{
	// Interpolating normal can unnormalize it, so normalize it.
    pin.NormalW = normalize(pin.NormalW);

	// The toEye vector is used in lighting.
	float3 toEye = gEyePosW - pin.PosW;

	// Cache the distance to the eye from this surface point.
	float distToEye = length(toEye);

	// Normalize.
	toEye /= distToEye;
	
    // Default to multiplicative identity.
    float4 texColor = float4(1, 1, 1, 1);
    if(gUseTexure)
	{
		// Sample texture.
		texColor = gDiffuseMap.Sample( samAnisotropic, pin.Tex );

		if(gAlphaClip)
		{
			// Discard pixel if texture alpha < 0.1.  Note that we do this
			// test as soon as possible so that we can potentially exit the shader 
			// early, thereby skipping the rest of the shader code.
			clip(texColor.a - 0.1f);
		}
	}
	 
	//
	// Lighting.
	//

	float4 litColor = texColor;
	if( gLightCount > 0  )
	{
		// Start with a sum of zero.
		float4 ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
		float4 diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
		float4 spec    = float4(0.0f, 0.0f, 0.0f, 0.0f);

		// Sum the light contribution from each light source.  
		[unroll]
		for(int i = 0; i < gLightCount; ++i)
		{
			float4 A, D, S;
			ComputeDirectionalLight(gMaterial, gDirLights[i], pin.NormalW, toEye, 
				A, D, S);

			ambient += A;
			diffuse += D;
			spec    += S;
		}

		// Modulate with late add.
		litColor = texColor*(ambient + diffuse) + spec;
	}

	//
	// Fogging
	//

	if( gFogEnabled )
	{
		float fogLerp = saturate( (distToEye - gFogStart) / gFogRange ); 

		// Blend the fog color and the lit color.
		litColor = lerp(litColor, gFogColor, fogLerp);
	}

	// Common to take alpha from diffuse material and texture.
	litColor.a = gMaterial.Diffuse.a * texColor.a;

    return litColor;
}

technique11 Light1
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
        SetGeometryShader(CompileShader(gs_5_0, GS()));
        SetPixelShader( CompileShader( ps_5_0, PS(1, false, false, false) ) );
    }
}

technique11 Light2
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, false, false, false) ) );
    }
}

technique11 Light3
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, false, false, false) ) );
    }
}

technique11 Light0Tex
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, false, false) ) );
    }
}

technique11 Light1Tex
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, false, false) ) );
    }
}

technique11 Light2Tex
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, false, false) ) );
    }
}

technique11 Light3Tex
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, false, false) ) );
    }
}

technique11 Light0TexAlphaClip
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, true, false) ) );
    }
}

technique11 Light1TexAlphaClip
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, true, false) ) );
    }
}

technique11 Light2TexAlphaClip
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, true, false) ) );
    }
}

technique11 Light3TexAlphaClip
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, true, false) ) );
    }
}

technique11 Light1Fog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, false, false, true) ) );
    }
}

technique11 Light2Fog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, false, false, true) ) );
    }
}

technique11 Light3Fog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, false, false, true) ) );
    }
}

technique11 Light0TexFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, false, true) ) );
    }
}

technique11 Light1TexFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, false, true) ) );
    }
}

technique11 Light2TexFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, false, true) ) );
    }
}

technique11 Light3TexFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, false, true) ) );
    }
}

technique11 Light0TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, true, true) ) );
    }
}

technique11 Light1TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, true, true) ) );
    }
}

technique11 Light2TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, true, true) ) );
    }
}

technique11 Light3TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VS() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, true, true) ) );
    }
}


LightHelper.fx
//***************************************************************************************
// LightHelper.fx by Frank Luna (C) 2011 All Rights Reserved.
//
// Structures and functions for lighting calculations.
//***************************************************************************************

struct DirectionalLight
{
	float4 Ambient;
	float4 Diffuse;
	float4 Specular;
	float3 Direction;
	float pad;
};

struct PointLight
{ 
	float4 Ambient;
	float4 Diffuse;
	float4 Specular;

	float3 Position;
	float Range;

	float3 Att;
	float pad;
};

struct SpotLight
{
	float4 Ambient;
	float4 Diffuse;
	float4 Specular;

	float3 Position;
	float Range;

	float3 Direction;
	float Spot;

	float3 Att;
	float pad;
};

struct Material
{
	float4 Ambient;
	float4 Diffuse;
	float4 Specular; // w = SpecPower
	float4 Reflect;
};

//---------------------------------------------------------------------------------------
// Computes the ambient, diffuse, and specular terms in the lighting equation
// from a directional light.  We need to output the terms separately because
// later we will modify the individual terms.
//---------------------------------------------------------------------------------------
void ComputeDirectionalLight(Material mat, DirectionalLight L, 
                             float3 normal, float3 toEye,
					         out float4 ambient,
						     out float4 diffuse,
						     out float4 spec)
{
	// Initialize outputs.
	ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
	diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
	spec    = float4(0.0f, 0.0f, 0.0f, 0.0f);

	// The light vector aims opposite the direction the light rays travel.
	float3 lightVec = -L.Direction;

	// Add ambient term.
	ambient = mat.Ambient * L.Ambient;	

	// Add diffuse and specular term, provided the surface is in 
	// the line of site of the light.
	
	float diffuseFactor = dot(lightVec, normal);

	// Flatten to avoid dynamic branching.
	[flatten]
	if( diffuseFactor > 0.0f )
	{
		float3 v         = reflect(-lightVec, normal);
		float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);
					
		diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;
		spec    = specFactor * mat.Specular * L.Specular;
	}
}

//---------------------------------------------------------------------------------------
// Computes the ambient, diffuse, and specular terms in the lighting equation
// from a point light.  We need to output the terms separately because
// later we will modify the individual terms.
//---------------------------------------------------------------------------------------
void ComputePointLight(Material mat, PointLight L, float3 pos, float3 normal, float3 toEye,
				   out float4 ambient, out float4 diffuse, out float4 spec)
{
	// Initialize outputs.
	ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
	diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
	spec    = float4(0.0f, 0.0f, 0.0f, 0.0f);

	// The vector from the surface to the light.
	float3 lightVec = L.Position - pos;
		
	// The distance from surface to light.
	float d = length(lightVec);
	
	// Range test.
	if( d > L.Range )
		return;
		
	// Normalize the light vector.
	lightVec /= d; 
	
	// Ambient term.
	ambient = mat.Ambient * L.Ambient;	

	// Add diffuse and specular term, provided the surface is in 
	// the line of site of the light.

	float diffuseFactor = dot(lightVec, normal);

	// Flatten to avoid dynamic branching.
	[flatten]
	if( diffuseFactor > 0.0f )
	{
		float3 v         = reflect(-lightVec, normal);
		float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);
					
		diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;
		spec    = specFactor * mat.Specular * L.Specular;
	}

	// Attenuate
	float att = 1.0f / dot(L.Att, float3(1.0f, d, d*d));

	diffuse *= att;
	spec    *= att;
}

//---------------------------------------------------------------------------------------
// Computes the ambient, diffuse, and specular terms in the lighting equation
// from a spotlight.  We need to output the terms separately because
// later we will modify the individual terms.
//---------------------------------------------------------------------------------------
void ComputeSpotLight(Material mat, SpotLight L, float3 pos, float3 normal, float3 toEye,
				  out float4 ambient, out float4 diffuse, out float4 spec)
{
	// Initialize outputs.
	ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
	diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
	spec    = float4(0.0f, 0.0f, 0.0f, 0.0f);

	// The vector from the surface to the light.
	float3 lightVec = L.Position - pos;
		
	// The distance from surface to light.
	float d = length(lightVec);
	
	// Range test.
	if( d > L.Range )
		return;
		
	// Normalize the light vector.
	lightVec /= d; 
	
	// Ambient term.
	ambient = mat.Ambient * L.Ambient;	

	// Add diffuse and specular term, provided the surface is in 
	// the line of site of the light.

	float diffuseFactor = dot(lightVec, normal);

	// Flatten to avoid dynamic branching.
	[flatten]
	if( diffuseFactor > 0.0f )
	{
		float3 v         = reflect(-lightVec, normal);
		float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);
					
		diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;
		spec    = specFactor * mat.Specular * L.Specular;
	}
	
	// Scale by spotlight factor and attenuate.
	float spot = pow(max(dot(-lightVec, L.Direction), 0.0f), L.Spot);

	// Scale by spotlight factor and attenuate.
	float att = spot / dot(L.Att, float3(1.0f, d, d*d));

	ambient *= spot;
	diffuse *= att;
	spec    *= att;
}

 
 

Effects.h
#ifndef EFFECTS_H
#define EFFECTS_H

#include "d3dUtil.h"

#pragma region Effect
class Effect
{
public:
    Effect(ID3D11Device* device, const std::wstring& filename);
    virtual ~Effect();

private:
    Effect(const Effect& rhs);
    Effect& operator=(const Effect& rhs);

protected:
    ID3DX11Effect* mFX;
};
#pragma endregion

#pragma region BasicEffect
class BasicEffect : public Effect
{
public:
    BasicEffect(ID3D11Device* device, const std::wstring& filename);
    ~BasicEffect();

    void SetWorldViewProj(CXMMATRIX M)                  { WorldViewProj->SetMatrix(reinterpret_cast(&M)); }
    void SetWorld(CXMMATRIX M)                          { World->SetMatrix(reinterpret_cast(&M)); }
    void SetWorldInvTranspose(CXMMATRIX M)              { WorldInvTranspose->SetMatrix(reinterpret_cast(&M)); }
    void SetTexTransform(CXMMATRIX M)                   { TexTransform->SetMatrix(reinterpret_cast(&M)); }
    void SetEyePosW(const XMFLOAT3& v)                  { EyePosW->SetRawValue(&v, 0, sizeof(XMFLOAT3)); }
    void SetDirLight(const DirectionalLight* lights)     { DirLights->SetRawValue(lights, 0, 3 * sizeof(DirectionalLight)); }
    void SetMatrial(const Material& mat)                { Mat->SetRawValue(&mat, 0, sizeof(Material)); }
    void SetDiffuseMap(ID3D11ShaderResourceView* tex)   { DiffuseMap->SetResource(tex); }

    ID3DX11EffectTechnique* Light1Tech;
    ID3DX11EffectTechnique* Light2Tech;
    ID3DX11EffectTechnique* Light3Tech;

    ID3DX11EffectMatrixVariable* WorldViewProj;
    ID3DX11EffectMatrixVariable* World;
    ID3DX11EffectMatrixVariable* WorldInvTranspose;
    ID3DX11EffectMatrixVariable* TexTransform;
    ID3DX11EffectVectorVariable* EyePosW;
    ID3DX11EffectVariable* DirLights;
    ID3DX11EffectVariable* Mat;

    ID3DX11EffectShaderResourceVariable* DiffuseMap;
};
#pragma endregion

#pragma region Effects
class Effects
{
public:
    static void InitAll(ID3D11Device* device);
    static void DestroyAll();

    static BasicEffect* BasicFX;
};
#pragma endregion

#endif

RenderStates.h
#ifndef RENDERSTATES_H
#define RENDERSTATES_H

#include "d3dUtil.h"

class RenderStates
{
public:
    static void InitAll(ID3D11Device* device);
    static void DestroyAll();

    // Rasterize states
    static ID3D11RasterizerState* WireframeRS;
    static ID3D11RasterizerState* NoCullRS;
    static ID3D11RasterizerState* CullClockwiseRS;

    // Blend states
    static ID3D11BlendState* AlphaToCoverageBS;
    static ID3D11BlendState* TransparentBS;
    static ID3D11BlendState* NoRenderTargetWritesBS;

    // Depth/stencil states
};

#endif

Vertex.h
#ifndef VERTEX_H
#define VERTEX_H

#include "d3dUtil.h"

namespace Vertex
{
	// Basic 32-byte vertex structure.
	struct Basic32
	{
		Basic32() : Pos(0.0f, 0.0f, 0.0f), Normal(0.0f, 0.0f, 0.0f), Tex(0.0f, 0.0f) {}
		Basic32(const XMFLOAT3& p, const XMFLOAT3& n, const XMFLOAT2& uv)
			: Pos(p), Normal(n), Tex(uv) {}
		Basic32(float px, float py, float pz, float nx, float ny, float nz, float u, float v)
			: Pos(px, py, pz), Normal(nx, ny, nz), Tex(u, v) {}
		XMFLOAT3 Pos;
		XMFLOAT3 Normal;
		XMFLOAT2 Tex;
	};
}

class InputLayoutDesc
{
public:
	// Init like const int A::a[4] = {0, 1, 2, 3}; in .cpp file.
	static const D3D11_INPUT_ELEMENT_DESC Basic32[3];

};

class InputLayouts
{
public:
    static void InitAll(ID3D11Device* device);
    static void DestroyAll();

    static ID3D11InputLayout* Basic32;
};

#endif

Effects.cpp
#include "Effects.h"

#pragma region Effect
Effect::Effect(ID3D11Device* device, const std::wstring& filename)
    : mFX(0)
{
    std::ifstream fin(filename, std::ios::binary);

    fin.seekg(0, std::ios_base::end);
    int size = (int)fin.tellg();
    fin.seekg(0, std::ios_base::beg);
    std::vector compiledShader(size);

    fin.read(&compiledShader[0], size);
    fin.close();

    HR(D3DX11CreateEffectFromMemory(&compiledShader[0], size,
        0, device, &mFX));
}

Effect::~Effect()
{
    ReleaseCOM(mFX);
}
#pragma endregion

#pragma region BasicEffect
BasicEffect::BasicEffect(ID3D11Device* device, const std::wstring& filename)
: Effect(device, filename)
{
    Light1Tech = mFX->GetTechniqueByName("Light1");
    Light2Tech = mFX->GetTechniqueByName("Light2");
    Light3Tech = mFX->GetTechniqueByName("Light3");

    WorldViewProj = mFX->GetVariableByName("gWorldViewProj")->AsMatrix();
    World = mFX->GetVariableByName("gWorld")->AsMatrix();
    WorldInvTranspose = mFX->GetVariableByName("gWorldInvTranspose")->AsMatrix();
    TexTransform = mFX->GetVariableByName("gTexTransform")->AsMatrix();
    EyePosW = mFX->GetVariableByName("gEyePosW")->AsVector();
    DirLights = mFX->GetVariableByName("gDirLights");
    Mat = mFX->GetVariableByName("gMaterial");
    DiffuseMap = mFX->GetVariableByName("gDiffuseMap")->AsShaderResource();
}

BasicEffect::~BasicEffect()
{
}
#pragma endregion

#pragma region Effects

BasicEffect* Effects::BasicFX = 0;

void Effects::InitAll(ID3D11Device* device)
{
    BasicFX = new BasicEffect(device, L"FX/Basic.fxo");
}

void Effects::DestroyAll()
{
    SafeDelete(BasicFX);
}
#pragma endregion

Main.cpp
#include "d3dApp.h"
#include "d3dx11Effect.h"
#include "GeometryGenerator.h"
#include "MathHelper.h"
#include "Effects.h"
#include "Vertex.h"
#include "RenderStates.h"

enum RenderOptions
{
	Lit = 0,
	Lit2 = 1,
};

enum TextureOptions
{
    Wireframe = 0,
    Color = 1,
};
class Icosahedron : public D3DApp
{
public:
    Icosahedron(HINSTANCE hInstance);
    ~Icosahedron();

	bool Init();
	void OnResize();
	void UpdateScene(float dt);
	void DrawScene(); 

	void OnMouseDown(WPARAM btnState, int x, int y);
	void OnMouseUp(WPARAM btnState, int x, int y);
	void OnMouseMove(WPARAM btnState, int x, int y);

private:
    void BuildIcosahedronGeometryBuffers();

private:
    ID3D11Buffer* mIcosahedronVB;
    ID3D11Buffer* mIcosahedronIB;

	ID3D11ShaderResourceView* mIcosahedronMapSRV;

    DirectionalLight mDirLights[3];
    Material mIcosahedronMat;

    XMFLOAT4X4 mIcosahedronWorld;

	UINT mIcosahedronIndexCount;

    XMFLOAT4X4 mView;
    XMFLOAT4X4 mProj;

    RenderOptions mRenderOptions;
    TextureOptions mTexOptions;

    XMFLOAT3 mEyePosW;

	float mTheta;
	float mPhi;
	float mRadius;

	POINT mLastMousePos;
};

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,
    PSTR cmdLine, int showCmd)
{
#if defined(DEBUG) | defined(_DEBUG)
    _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

    Icosahedron theApp(hInstance);

    if (!theApp.Init())
        return 0;

    return theApp.Run();
}

Icosahedron::Icosahedron(HINSTANCE hInstance)
: D3DApp(hInstance), mIcosahedronVB(0), mIcosahedronIB(0), mEyePosW(0.0f, 0.0f, 0.0f), mRenderOptions(RenderOptions::Lit),
mIcosahedronIndexCount(0), mTheta(1.3f*MathHelper::Pi), mPhi(0.4f*MathHelper::Pi), mRadius(80.0f), mTexOptions(TextureOptions::Color)
{
    mMainWndCaption = L"Icosahedron";
    mEnable4xMsaa = true;

    mLastMousePos.x = 0;
    mLastMousePos.y = 0;

    XMMATRIX I = XMMatrixIdentity();
    XMStoreFloat4x4(&mView, I);
    XMStoreFloat4x4(&mProj, I);

    XMMATRIX icosahedronScale = XMMatrixScaling(5.0f, 5.0f, 5.0f);
    XMMATRIX icosahedronOffset = XMMatrixTranslation(0.0f, 0.0f, 0.0f);
    XMStoreFloat4x4(&mIcosahedronWorld, icosahedronScale*icosahedronOffset);

    mDirLights[0].Ambient = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f);
    mDirLights[0].Diffuse = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
    mDirLights[0].Specular = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
    mDirLights[0].Direction = XMFLOAT3(0.57735f, -0.57735f, 0.57735f);

    mDirLights[1].Ambient = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
    mDirLights[1].Diffuse = XMFLOAT4(0.20f, 0.20f, 0.20f, 1.0f);
    mDirLights[1].Specular = XMFLOAT4(0.25f, 0.25f, 0.25f, 1.0f);
    mDirLights[1].Direction = XMFLOAT3(-0.57735f, -0.57735f, 0.57735f);

    mDirLights[2].Ambient = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
    mDirLights[2].Diffuse = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f);
    mDirLights[2].Specular = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
    mDirLights[2].Direction = XMFLOAT3(0.0f, -0.707f, -0.707f);

    mIcosahedronMat.Ambient = XMFLOAT4(0.48f, 0.77f, 0.46f, 1.0f);
    mIcosahedronMat.Diffuse = XMFLOAT4(0.48f, 0.77f, 0.46f, 1.0f);
    mIcosahedronMat.Specular = XMFLOAT4(0.2f, 0.2f, 0.2f, 16.0f);
}

Icosahedron::~Icosahedron()
{
    md3dImmediateContext->ClearState();
    ReleaseCOM(mIcosahedronVB);
    ReleaseCOM(mIcosahedronIB);

    Effects::DestroyAll();
    InputLayouts::DestroyAll();
    RenderStates::DestroyAll();
}

bool Icosahedron::Init()
{
	if (!D3DApp::Init())
		return false;

	Effects::InitAll(md3dDevice);
	InputLayouts::InitAll(md3dDevice);
	RenderStates::InitAll(md3dDevice);

	BuildIcosahedronGeometryBuffers();

	return true;
}

void Icosahedron::OnResize()
{
	D3DApp::OnResize();

	XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*MathHelper::Pi, AspectRatio(), 1.0f, 1000.0f);
	XMStoreFloat4x4(&mProj, P);
}

void Icosahedron::UpdateScene(float dt)
{
	float x = mRadius*sinf(mPhi)*cosf(mTheta);
	float z = mRadius*sinf(mPhi)*sinf(mTheta);
	float y = mRadius*cosf(mPhi);

	mEyePosW = XMFLOAT3(x, y, z);

	 // Build the view matrix.
	XMVECTOR pos =	  XMVectorSet(x, y, z, 1.0f);
	XMVECTOR target = XMVectorZero();
	XMVECTOR up =	  XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

	XMMATRIX V = XMMatrixLookAtLH(pos, target, up);
	XMStoreFloat4x4(&mView, V);

	//
	// Switch the render mode based in key input
	//
	if (GetAsyncKeyState('1') & 0x8000)
		mRenderOptions = RenderOptions::Lit;

	if (GetAsyncKeyState('2') & 0x8000)
		mRenderOptions = RenderOptions::Lit2;

    if (GetAsyncKeyState('W') & 0x8000)
        mTexOptions = TextureOptions::Wireframe;

    if (GetAsyncKeyState('C') & 0x8000)
        mTexOptions = TextureOptions::Color;
}

void Icosahedron::DrawScene()
{
	md3dImmediateContext->ClearRenderTargetView(mRenderTargetView, reinterpret_cast(&Colors::Silver));
	md3dImmediateContext->ClearDepthStencilView(mDepthStencilView, D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0);

	md3dImmediateContext->IASetInputLayout(InputLayouts::Basic32);
	md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

	XMMATRIX view = XMLoadFloat4x4(&mView);
	XMMATRIX proj = XMLoadFloat4x4(&mProj);
	XMMATRIX viewProj = view*proj;

    Effects::BasicFX->SetEyePosW(mEyePosW);
    Effects::BasicFX->SetDirLight(mDirLights);

	//
	// Figure out which technique to use
	//
	ID3DX11EffectTechnique* IcosahedronTech;

	switch (mRenderOptions)
	{
	case RenderOptions::Lit:
		IcosahedronTech = Effects::BasicFX->Light1Tech;
		break;
	case RenderOptions::Lit2:
		IcosahedronTech = Effects::BasicFX->Light2Tech;
		break;
	}

	UINT stride = sizeof(Vertex::Basic32);
	UINT offset = 0;

	D3DX11_TECHNIQUE_DESC techDesc;

	//
	// DraW the icosahedron.
	//

	IcosahedronTech->GetDesc(&techDesc);
	for (UINT p = 0; p < techDesc.Passes; ++p)
	{


		md3dImmediateContext->IASetVertexBuffers(0, 1, &mIcosahedronVB, &stride, &offset);
		md3dImmediateContext->IASetIndexBuffer(mIcosahedronIB, DXGI_FORMAT_R32_UINT, 0);

		// Set per object constants.
		XMMATRIX world = XMLoadFloat4x4(&mIcosahedronWorld);
		XMMATRIX worldInvTranspose = MathHelper::InverseTranspose(world);
		XMMATRIX worldViewProj = world*view*proj;

		Effects::BasicFX->SetWorld(world);
		Effects::BasicFX->SetWorldInvTranspose(worldInvTranspose);
		Effects::BasicFX->SetWorldViewProj(worldViewProj);
		Effects::BasicFX->SetTexTransform(XMMatrixIdentity());
		Effects::BasicFX->SetMatrial(mIcosahedronMat);
		//Effects::BasicFX->SetDiffuseMap(mIcosahedronMapSRV);

        switch (mTexOptions)
        {
        case TextureOptions::Color:
            md3dImmediateContext->RSSetState(RenderStates::NoCullRS);
            break;
        case TextureOptions::Wireframe:
            md3dImmediateContext->RSSetState(RenderStates::WireframeRS);
            break;
        }
		
		
			
		IcosahedronTech->GetPassByIndex(p)->Apply(0, md3dImmediateContext);
		md3dImmediateContext->DrawIndexed(mIcosahedronIndexCount, 0, 0);

		// Restore default render state.
		md3dImmediateContext->RSSetState(0);
	}

	HR(mSwapChain->Present(0, 0));
}

void Icosahedron::OnMouseDown(WPARAM btnState, int x, int y)
{
	mLastMousePos.x = x;
	mLastMousePos.y = y;

	SetCapture(mhMainWnd);
}

void Icosahedron::OnMouseUp(WPARAM btnState, int x, int y)
{
	ReleaseCapture();
}

void Icosahedron::OnMouseMove(WPARAM btnState, int x, int y)
{
	if ((btnState & MK_LBUTTON) != 0)
	{
		// Make each pixel correspond to a quater of a degree.
		float dx = XMConvertToRadians(0.25f*static_cast(x - mLastMousePos.x));
		float dy = XMConvertToRadians(0.25f*static_cast(y - mLastMousePos.y));

		// Update angles based on input to orbit camera around box.
		mTheta += dx;
		mPhi += dy;

		// Restric the angle mPhi.
		mPhi = MathHelper::Clamp(mPhi, 0.1f, MathHelper::Pi - 0.1f);
	}
	else if ((btnState & MK_RBUTTON) != 0)
	{
		// Make each pixel correspond to 0.01 unit in the scene.
		float dx = 0.1f*static_cast(x - mLastMousePos.x);
		float dy = 0.1f*static_cast(y - mLastMousePos.y);

		//Update the camera radius based on inputs.
		mRadius += dx - dy;

		// Restrict the radius.
		mRadius = MathHelper::Clamp(mRadius, 10.0f, 500.0f);
	}

	mLastMousePos.x = x;
	mLastMousePos.y = y;
}

void  Icosahedron::BuildIcosahedronGeometryBuffers()
{
	GeometryGenerator::MeshData icosahedron;

	GeometryGenerator geoGen;
	geoGen.CreateGeosphere(1.0f, 0u, icosahedron);

	//
	// Extract the vertex elements we are interested in and pack the
	// vertices of all the meshes into one vertex buffer
	//

	std::vector vertices(icosahedron.Vertices.size());

	for (UINT i = 0; i < icosahedron.Vertices.size(); ++i)
	{
		vertices[i].Pos = icosahedron.Vertices[i].Position;
		vertices[i].Normal = icosahedron.Vertices[i].Normal;
		vertices[i].Tex = icosahedron.Vertices[i].TexC;
	}

	D3D11_BUFFER_DESC vbd;
	vbd.Usage = D3D11_USAGE_IMMUTABLE;
	vbd.ByteWidth = sizeof(Vertex::Basic32) * icosahedron.Vertices.size();
	vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
	vbd.CPUAccessFlags = 0;
	vbd.MiscFlags = 0;
	D3D11_SUBRESOURCE_DATA vinitData;
	vinitData.pSysMem = &vertices[0];
	HR(md3dDevice->CreateBuffer(&vbd, &vinitData, &mIcosahedronVB));

	//
	// Pack the indices of all the meshes into one index buffer.
	//

	D3D11_BUFFER_DESC ibd;
	ibd.Usage = D3D11_USAGE_IMMUTABLE;
	ibd.ByteWidth = sizeof(UINT)* icosahedron.Indices.size(); 
	ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
	ibd.CPUAccessFlags = 0;
	ibd.MiscFlags = 0;
	D3D11_SUBRESOURCE_DATA iinitData;
	iinitData.pSysMem = &icosahedron.Indices[0];
	mIcosahedronIndexCount = icosahedron.Indices.size();
	HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mIcosahedronIB));
}

RenderStates.cpp
#include "RenderStates.h"

ID3D11RasterizerState* RenderStates::WireframeRS     = 0;
ID3D11RasterizerState* RenderStates::NoCullRS        = 0;
ID3D11RasterizerState* RenderStates::CullClockwiseRS = 0;

ID3D11BlendState*      RenderStates::AlphaToCoverageBS      = 0;
ID3D11BlendState*      RenderStates::TransparentBS          = 0;
ID3D11BlendState*      RenderStates::NoRenderTargetWritesBS = 0;

void RenderStates::InitAll(ID3D11Device* device)
{
    //
    // WireframeRS
    //
    D3D11_RASTERIZER_DESC wireframeDesc;
    ZeroMemory(&wireframeDesc, sizeof(D3D11_RASTERIZER_DESC));
    wireframeDesc.FillMode = D3D11_FILL_WIREFRAME;
    wireframeDesc.CullMode = D3D11_CULL_BACK;
    wireframeDesc.FrontCounterClockwise = false;
    wireframeDesc.DepthClipEnable = true;

    HR(device->CreateRasterizerState(&wireframeDesc, &WireframeRS));

    //
    // NoCullRS
    //
    D3D11_RASTERIZER_DESC noCullDesc;
    ZeroMemory(&noCullDesc, sizeof(D3D11_RASTERIZER_DESC));
    noCullDesc.FillMode = D3D11_FILL_SOLID;
    noCullDesc.CullMode = D3D11_CULL_NONE;
    noCullDesc.FrontCounterClockwise = false;
    noCullDesc.DepthClipEnable = true;

    HR(device->CreateRasterizerState(&noCullDesc, &NoCullRS));

    //
    // CullClockwiseRS
    //

    // Note: Define such that we still cull backfaces by making front faces CCW.
    // If we did not cull bacefaces, then we have to worry about the BackFace
    // property in the D3D11_DEPTH_STENCIL_DESC
    D3D11_RASTERIZER_DESC cullClockwiseDesc;
    ZeroMemory(&cullClockwiseDesc, sizeof(D3D11_RASTERIZER_DESC));
    cullClockwiseDesc.FillMode = D3D11_FILL_SOLID;
    cullClockwiseDesc.CullMode = D3D11_CULL_BACK;
    cullClockwiseDesc.FrontCounterClockwise = true;
    cullClockwiseDesc.DepthClipEnable = true;

    HR(device->CreateRasterizerState(&cullClockwiseDesc, &CullClockwiseRS));

    //
    // AlphaToCoverageBS
    //

    D3D11_BLEND_DESC alphaToCoverageDesc = { 0 };
    alphaToCoverageDesc.AlphaToCoverageEnable = true;
    alphaToCoverageDesc.IndependentBlendEnable = false;
    alphaToCoverageDesc.RenderTarget[0].BlendEnable = false;
    alphaToCoverageDesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;

    HR(device->CreateBlendState(&alphaToCoverageDesc, &AlphaToCoverageBS));

    //
    // TransparentBS
    //

    D3D11_BLEND_DESC transparentDesc = { 0 };
    transparentDesc.AlphaToCoverageEnable = false;
    transparentDesc.IndependentBlendEnable = false;

    transparentDesc.RenderTarget[0].BlendEnable = true;
    transparentDesc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;
    transparentDesc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
    transparentDesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
    transparentDesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
    transparentDesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
    transparentDesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
    transparentDesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;

    HR(device->CreateBlendState(&transparentDesc, &TransparentBS));

    //
    //NoRenderTargetWritesBS
    //

    D3D11_BLEND_DESC noRenderTargetWritesDesc = { 0 };
    noRenderTargetWritesDesc.AlphaToCoverageEnable = false;
    noRenderTargetWritesDesc.IndependentBlendEnable = false;

    noRenderTargetWritesDesc.RenderTarget[0].BlendEnable = false;
    noRenderTargetWritesDesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
    noRenderTargetWritesDesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
    noRenderTargetWritesDesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
    noRenderTargetWritesDesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
    noRenderTargetWritesDesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
    noRenderTargetWritesDesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
    noRenderTargetWritesDesc.RenderTarget[0].RenderTargetWriteMask = 0;

    HR(device->CreateBlendState(&noRenderTargetWritesDesc, &NoRenderTargetWritesBS));
}

void RenderStates::DestroyAll()
{
    ReleaseCOM(WireframeRS);
    ReleaseCOM(NoCullRS);
    ReleaseCOM(CullClockwiseRS);

    ReleaseCOM(AlphaToCoverageBS);
    ReleaseCOM(TransparentBS);
    ReleaseCOM(NoRenderTargetWritesBS);
}

Vertex.cpp
#include "Vertex.h"
#include "Effects.h"

#pragma region InputLayoutDesc

const D3D11_INPUT_ELEMENT_DESC InputLayoutDesc::Basic32[3] =
{
	{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
	{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
	{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};

#pragma endregion

#pragma region InputLayouts

ID3D11InputLayout* InputLayouts::Basic32 = 0;

void InputLayouts::InitAll(ID3D11Device* device)
{
	D3DX11_PASS_DESC passDesc;

	//
	// Basic32
	//

	Effects::BasicFX->Light1Tech->GetPassByIndex(0)->GetDesc(&passDesc);
	HR(device->CreateInputLayout(InputLayoutDesc::Basic32, 3, passDesc.pIAInputSignature,
		passDesc.IAInputSignatureSize, &Basic32));
}

void InputLayouts::DestroyAll()
{
	ReleaseCOM(Basic32);
}

#pragma endregion

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第4张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第5张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第6张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第7张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第8张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第9张图片


11.3 那个primitiveID用的有点问题,GS的第一个参数用了个数组,所以primitiveID按照数组的第一个元素设置了

void Explosion(VertexOut inVerts[3], uint primID : SV_PrimitiveID, inout TriangleStream triStream)
{
    VertexOut explosionVerts[3];
    GeoOut gout[3];
    float3 u = inVerts[1].PosL - inVerts[0].PosL;
        float3 v = inVerts[2].PosL - inVerts[0].PosL;
        float3 n = cross(u, v);
    [unroll]
    for (int i = 0; i < 3; ++i)
    {
        explosionVerts[i].PosL = inVerts[i].PosL + /*primID * */gScale * gTime * n;
        // Transorm to world space space.
        gout[i].PosW = mul(float4(explosionVerts[i].PosL, 1.0f), gWorld).xyz;
        gout[i].NormalW = mul(normalize(explosionVerts[i].PosL), (float3x3)gWorldInvTranspose);

        // Transform to homogeneous clip space.
        gout[i].PosH = mul(float4(explosionVerts[i].PosL, 1.0f), gWorldViewProj);

        gout[i].Tex = inVerts[i].Tex;
    }

    [unroll]
    for (int j = 0; j < 3; ++j)
    {
        triStream.Append(gout[j]);
    }
}

[maxvertexcount(24)]
void GS(triangle VertexOut gin[3], uint primID : SV_PrimitiveID, inout TriangleStream triStream)
{

    if (length(gEyePosW) >= 30)
    {
        //VertexOut v[3];
        //SubdivideZero(gin, v);
        //OutputSubdivisionZero(v, triStream);
        Explosion(gin, primID, triStream);
    }
    else if ((length(gEyePosW) >= 15))
    {
        VertexOut v[6];
        Subdivide(gin, v);
        OutputSubdivision(v, triStream);
    }else
    {
        VertexOut v[15];
        SubdivideTwice(gin, v);
        OutputSubdivisionTwice(v, triStream);
    }
}

    if (GetAsyncKeyState('E') & 0x8000)
    {
        fExpTimeBase = mTimer.TotalTime();
        bExplosion = true;
    }

    if (GetAsyncKeyState('F') & 0x8000)
        fScale++;
}

    Effects::BasicFX->SetExpTime(mExpTime);
    Effects::BasicFX->SetExplosionScalar(fScale);

和上一题比,代码变动不大

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第10张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第11张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第12张图片


因为有爆炸效果,所以做了个gif,可能网页上看不到,下载就能看到

11.4代码写的很乱,变量名设定的也不合适,但还好,效果出来了

//=============================================================================
// Basic.fx by Frank Luna (C) 2011 All Rights Reserved.
//
// Basic effect that currently supports transformations, lighting, and texturing.
//=============================================================================

#include "LightHelper.fx"
 
cbuffer cbPerFrame
{
	DirectionalLight gDirLights[3];
	float3 gEyePosW;

	float  gFogStart;
	float  gFogRange;
	float4 gFogColor;
};

cbuffer cbPerObject
{
	float4x4 gWorld;
	float4x4 gWorldInvTranspose;
	float4x4 gWorldViewProj;
	float4x4 gTexTransform;
	Material gMaterial;

}; 

// Nonnumeric values cannot be added to a cbuffer.
Texture2D gDiffuseMap;

SamplerState samAnisotropic
{
	Filter = ANISOTROPIC;
	MaxAnisotropy = 4;

	AddressU = WRAP;
	AddressV = WRAP;
};

struct VertexIn
{
	float3 PosL    : POSITION;
	float3 NormalL : NORMAL;
	float2 Tex     : TEXCOORD;
};

struct VertexOut
{
	float4 PosH    : SV_POSITION;
    float3 PosW    : POSITION;
    float3 NormalW : NORMAL;
	float2 Tex     : TEXCOORD;
};

struct GeoOut
{
    float4 PosH    : SV_POSITION;
    float3 PosW    : POSITION;
    float3 NormalW : NORMAL;
    float2 Tex     : TEXCOORD;
};

VertexOut VS(VertexIn vin)
{
	VertexOut vout;

	// Transform to world space space.
	vout.PosW    = mul(float4(vin.PosL, 1.0f), gWorld).xyz;
	vout.NormalW = mul(vin.NormalL, (float3x3)gWorldInvTranspose);
		
	// Transform to homogeneous clip space.
	vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj);
	
	// Output vertex attributes for interpolation across triangle.
	vout.Tex = mul(float4(vin.Tex, 0.0f, 1.0f), gTexTransform).xy;
	return vout;
}

VertexOut VSONE(VertexIn vin)
{
    VertexOut vout;

    // Transform to world space space.
    vout.PosW = vin.PosL;
    vout.NormalW = vin.NormalL;

    // Transform to homogeneous clip space.
    vout.PosH = (vin.PosL, 1.0f);

    // Output vertex attributes for interpolation across triangle.
    vout.Tex = vin.Tex;
    return vout;
}

[maxvertexcount(3)]
void GS(point VertexOut gin[1], inout LineStream lineStream)
{
    GeoOut gout[2];
    gout[0].PosH = mul(float4(gin[0].PosW, 1.0f), gWorldViewProj);
    gout[0].PosW = mul(float4(gin[0].PosW, 1.0f), gWorld).xyz;
    gout[0].NormalW = mul(gin[0].NormalW, (float3x3)gWorldInvTranspose);
    gout[0].Tex = mul(float4(gin[0].Tex, 0.0f, 1.0f), gTexTransform).xy;
    gout[1].PosW = mul(float4((gin[0].PosW + gin[0].NormalW), 1.0f), gWorld).xyz;
    gout[1].NormalW = mul(normalize((gin[0].PosW + gin[0].NormalW)), (float3x3)gWorldInvTranspose);
    gout[1].PosH = mul(float4((gin[0].PosW + gin[0].NormalW), 1.0f), gWorldViewProj);
    gout[1].Tex = gout[0].Tex;

    lineStream.Append(gout[1]);
    lineStream.Append(gout[0]);
    
}
 
float4 PS(GeoOut pin, uniform int gLightCount, uniform bool gUseTexure, uniform bool gAlphaClip, uniform bool gFogEnabled) : SV_Target
{
	// Interpolating normal can unnormalize it, so normalize it.
    pin.NormalW = normalize(pin.NormalW);

	// The toEye vector is used in lighting.
	float3 toEye = gEyePosW - pin.PosW; 
	 
	// Cache the distance to the eye from this surface point.
	float distToEye = length(toEye);

	// Normalize.
	toEye /= distToEye;
	
    // Default to multiplicative identity.
    float4 texColor = float4(1, 1, 1, 1);
    if(gUseTexure)
	{
		// Sample texture.
		texColor = gDiffuseMap.Sample( samAnisotropic, pin.Tex );

		if(gAlphaClip)
		{
			// Discard pixel if texture alpha < 0.1.  Note that we do this
			// test as soon as possible so that we can potentially exit the shader 
			// early, thereby skipping the rest of the shader code.
			clip(texColor.a - 0.1f);
		}
	}
	 
	//
	// Lighting.
	//

	float4 litColor = texColor;
	if( gLightCount > 0  )
	{  
		// Start with a sum of zero. 
		float4 ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);
		float4 diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);
		float4 spec    = float4(0.0f, 0.0f, 0.0f, 0.0f);

		// Sum the light contribution from each light source.  
		[unroll]
		for(int i = 0; i < gLightCount; ++i)
		{
			float4 A, D, S;
			ComputeDirectionalLight(gMaterial, gDirLights[i], pin.NormalW, toEye, 
				A, D, S);

			ambient += A;
			diffuse += D;
			spec    += S;
		}

		// Modulate with late add.
		litColor = texColor*(ambient + diffuse) + spec;
	}

	//
	// Fogging
	//

	if( gFogEnabled )
	{
		float fogLerp = saturate( (distToEye - gFogStart) / gFogRange ); 

		// Blend the fog color and the lit color.
		litColor = lerp(litColor, gFogColor, fogLerp);
	}

	// Common to take alpha from diffuse material and texture.
	litColor.a = gMaterial.Diffuse.a * texColor.a;

    return litColor;
}

technique11 Light1
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_5_0, VSONE() ) );
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, false, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, false, false, false)));
    }
}

technique11 Light2
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, false, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, false, false, false)));
    }
}

technique11 Light3
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, false, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, false, false, false)));
    }
}

technique11 Light0Tex
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(0, true, false, false)));
    }
}

technique11 Light1Tex
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, true, false, false)));
    }
}

technique11 Light2Tex
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, true, false, false)));
    }
}

technique11 Light3Tex
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, false, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, true, false, false)));
    }
}

technique11 Light0TexAlphaClip
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, true, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(0, true, true, false)));
    }
}

technique11 Light1TexAlphaClip
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, true, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, true, true, false)));
    }
}

technique11 Light2TexAlphaClip
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, true, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, true, true, false)));
    }
}

technique11 Light3TexAlphaClip
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, true, false) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, true, true, false)));
    }
}

technique11 Light1Fog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, false, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, false, false, true)));
    }
}

technique11 Light2Fog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, false, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, false, false, true)));
    }
}

technique11 Light3Fog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, false, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, false, false, true)));
    }
}

technique11 Light0TexFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(0, true, false, true)));
    }
}

technique11 Light1TexFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, true, false, true)));
    }
}

technique11 Light2TexFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, true, false, true)));
    }
}

technique11 Light3TexFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, false, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, true, false, true)));
    }
}

technique11 Light0TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(0, true, true, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(0, true, true, true)));
    }
}

technique11 Light1TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(1, true, true, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(1, true, true, true)));
    }
}

technique11 Light2TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(2, true, true, true) ) );
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(2, true, true, true)));
    }
}

technique11 Light3TexAlphaClipFog
{
    pass P0
    {
        SetVertexShader(CompileShader(vs_5_0, VSONE()));
		SetGeometryShader( CompileShader(gs_5_0, GS()) );
        SetPixelShader( CompileShader( ps_5_0, PS(3, true, true, true) ) ); 
    }

    pass P1
    {
        SetVertexShader(CompileShader(vs_5_0, VS()));
        SetGeometryShader(NULL);
        SetPixelShader(CompileShader(ps_5_0, PS(3, true, true, true)));
    }
}

//***************************************************************************************
// BlendDemo.cpp by Frank Luna (C) 2011 All Rights Reserved.
//
// Demonstrates blending, HLSL clip(), and fogging.
//
// Controls:
//		Hold the left mouse button down and move the mouse to rotate.
//      Hold the right mouse button down to zoom in and out.
//
//      Press '1' - Lighting only render mode.
//      Press '2' - Texture render mode.
//      Press '3' - Fog render mode.
//
//***************************************************************************************

#include "d3dApp.h"
#include "d3dx11Effect.h"
#include "GeometryGenerator.h"
#include "MathHelper.h"
#include "LightHelper.h"
#include "Effects.h"
#include "Vertex.h"
#include "RenderStates.h"
#include "Waves.h"

enum RenderOptions
{
	Lighting = 0,
	Textures = 1,
	TexturesAndFog = 2
};

class BlendApp : public D3DApp
{
public:
	BlendApp(HINSTANCE hInstance);
	~BlendApp();

	bool Init();
	void OnResize();
	void UpdateScene(float dt);
	void DrawScene(); 

	void OnMouseDown(WPARAM btnState, int x, int y);
	void OnMouseUp(WPARAM btnState, int x, int y);
	void OnMouseMove(WPARAM btnState, int x, int y);

private:
	float GetHillHeight(float x, float z)const;
	XMFLOAT3 GetHillNormal(float x, float z)const;
	void BuildLandGeometryBuffers();
	void BuildWaveGeometryBuffers();
	void BuildCrateGeometryBuffers();

private:
	ID3D11Buffer* mLandVB;
	ID3D11Buffer* mLandIB;

	ID3D11Buffer* mWavesVB;
	ID3D11Buffer* mWavesIB;

	ID3D11Buffer* mBoxVB;
	ID3D11Buffer* mBoxIB;

	ID3D11ShaderResourceView* mGrassMapSRV;
	ID3D11ShaderResourceView* mWavesMapSRV;
	ID3D11ShaderResourceView* mBoxMapSRV;

	Waves mWaves;

	DirectionalLight mDirLights[3];
	Material mLandMat;
	Material mWavesMat;
	Material mBoxMat;

	XMFLOAT4X4 mGrassTexTransform;
	XMFLOAT4X4 mWaterTexTransform;
	XMFLOAT4X4 mLandWorld;
	XMFLOAT4X4 mWavesWorld;
	XMFLOAT4X4 mBoxWorld;

	XMFLOAT4X4 mView;
	XMFLOAT4X4 mProj;

	UINT mLandIndexCount;

	XMFLOAT2 mWaterTexOffset;

	RenderOptions mRenderOptions;

	XMFLOAT3 mEyePosW;

	float mTheta;
	float mPhi;
	float mRadius;

	POINT mLastMousePos;
};

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,
				   PSTR cmdLine, int showCmd)
{
	// Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
	_CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
#endif

	BlendApp theApp(hInstance);
	
	if( !theApp.Init() )
		return 0;
	
	return theApp.Run();
}

BlendApp::BlendApp(HINSTANCE hInstance)
: D3DApp(hInstance), mLandVB(0), mLandIB(0), mWavesVB(0), mWavesIB(0), mBoxVB(0), mBoxIB(0), mGrassMapSRV(0), mWavesMapSRV(0), mBoxMapSRV(0),
  mWaterTexOffset(0.0f, 0.0f), mEyePosW(0.0f, 0.0f, 0.0f), mLandIndexCount(0), mRenderOptions(RenderOptions::TexturesAndFog),
  mTheta(1.3f*MathHelper::Pi), mPhi(0.4f*MathHelper::Pi), mRadius(80.0f)
{
	mMainWndCaption = L"Blend Demo";
	mEnable4xMsaa = false;

	mLastMousePos.x = 0;
	mLastMousePos.y = 0;

	XMMATRIX I = XMMatrixIdentity();
	XMStoreFloat4x4(&mLandWorld, I);
	XMStoreFloat4x4(&mWavesWorld, I);
	XMStoreFloat4x4(&mView, I);
	XMStoreFloat4x4(&mProj, I);

	XMMATRIX boxScale = XMMatrixScaling(15.0f, 15.0f, 15.0f);
	XMMATRIX boxOffset = XMMatrixTranslation(8.0f, 5.0f, -15.0f);
	XMStoreFloat4x4(&mBoxWorld, boxScale*boxOffset);

	XMMATRIX grassTexScale = XMMatrixScaling(5.0f, 5.0f, 0.0f);
	XMStoreFloat4x4(&mGrassTexTransform, grassTexScale);

	mDirLights[0].Ambient  = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f);
	mDirLights[0].Diffuse  = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
	mDirLights[0].Specular = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
	mDirLights[0].Direction = XMFLOAT3(0.57735f, -0.57735f, 0.57735f);

	mDirLights[1].Ambient  = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
	mDirLights[1].Diffuse  = XMFLOAT4(0.20f, 0.20f, 0.20f, 1.0f);
	mDirLights[1].Specular = XMFLOAT4(0.25f, 0.25f, 0.25f, 1.0f);
	mDirLights[1].Direction = XMFLOAT3(-0.57735f, -0.57735f, 0.57735f);

	mDirLights[2].Ambient  = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
	mDirLights[2].Diffuse  = XMFLOAT4(0.2f, 0.2f, 0.2f, 1.0f);
	mDirLights[2].Specular = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
	mDirLights[2].Direction = XMFLOAT3(0.0f, -0.707f, -0.707f);

	mLandMat.Ambient  = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
	mLandMat.Diffuse  = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f);
	mLandMat.Specular = XMFLOAT4(0.2f, 0.2f, 0.2f, 16.0f);

	mWavesMat.Ambient  = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
	mWavesMat.Diffuse  = XMFLOAT4(1.0f, 1.0f, 1.0f, 0.5f);
	mWavesMat.Specular = XMFLOAT4(0.8f, 0.8f, 0.8f, 32.0f);

	mBoxMat.Ambient  = XMFLOAT4(0.5f, 0.5f, 0.5f, 1.0f);
	mBoxMat.Diffuse  = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f);
	mBoxMat.Specular = XMFLOAT4(0.4f, 0.4f, 0.4f, 16.0f);
}

BlendApp::~BlendApp()
{
	md3dImmediateContext->ClearState();
	ReleaseCOM(mLandVB);
	ReleaseCOM(mLandIB);
	ReleaseCOM(mWavesVB);
	ReleaseCOM(mWavesIB);
	ReleaseCOM(mBoxVB);
	ReleaseCOM(mBoxIB);
	ReleaseCOM(mGrassMapSRV);
	ReleaseCOM(mWavesMapSRV);
	ReleaseCOM(mBoxMapSRV);

	Effects::DestroyAll();
	InputLayouts::DestroyAll();
	RenderStates::DestroyAll();
}

bool BlendApp::Init()
{
	if(!D3DApp::Init())
		return false;

	mWaves.Init(160, 160, 1.0f, 0.03f, 5.0f, 0.3f);

	// Must init Effects first since InputLayouts depend on shader signatures.
	Effects::InitAll(md3dDevice);
	InputLayouts::InitAll(md3dDevice);
	RenderStates::InitAll(md3dDevice);

	HR(D3DX11CreateShaderResourceViewFromFile(md3dDevice, 
		L"Textures/grass.dds", 0, 0, &mGrassMapSRV, 0 ));

	HR(D3DX11CreateShaderResourceViewFromFile(md3dDevice, 
		L"Textures/water2.dds", 0, 0, &mWavesMapSRV, 0 ));

	HR(D3DX11CreateShaderResourceViewFromFile(md3dDevice, 
		L"Textures/WireFence.dds", 0, 0, &mBoxMapSRV, 0 ));

	BuildLandGeometryBuffers();
	BuildWaveGeometryBuffers();
	BuildCrateGeometryBuffers();

	return true;
}

void BlendApp::OnResize()
{
	D3DApp::OnResize();

	XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*MathHelper::Pi, AspectRatio(), 1.0f, 1000.0f);
	XMStoreFloat4x4(&mProj, P);
}

void BlendApp::UpdateScene(float dt)
{
	// Convert Spherical to Cartesian coordinates.
	float x = mRadius*sinf(mPhi)*cosf(mTheta);
	float z = mRadius*sinf(mPhi)*sinf(mTheta);
	float y = mRadius*cosf(mPhi);

	mEyePosW = XMFLOAT3(x, y, z);

	// Build the view matrix.
	XMVECTOR pos    = XMVectorSet(x, y, z, 1.0f);
	XMVECTOR target = XMVectorZero();
	XMVECTOR up     = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

	XMMATRIX V = XMMatrixLookAtLH(pos, target, up);
	XMStoreFloat4x4(&mView, V);

	//
	// Every quarter second, generate a random wave.
	//
	static float t_base = 0.0f;
	if( (mTimer.TotalTime() - t_base) >= 0.1f )
	{
		t_base += 0.1f;
 
		DWORD i = 5 + rand() % (mWaves.RowCount()-10);
		DWORD j = 5 + rand() % (mWaves.ColumnCount()-10);

		float r = MathHelper::RandF(0.5f, 1.0f);

		mWaves.Disturb(i, j, r);
	}

	mWaves.Update(dt);

	//
	// Update the wave vertex buffer with the new solution.
	//
	
	D3D11_MAPPED_SUBRESOURCE mappedData;
	HR(md3dImmediateContext->Map(mWavesVB, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedData));

	Vertex::Basic32* v = reinterpret_cast(mappedData.pData);
	for(UINT i = 0; i < mWaves.VertexCount(); ++i)
	{
		v[i].Pos    = mWaves[i];
		v[i].Normal = mWaves.Normal(i);

		// Derive tex-coords in [0,1] from position.
		v[i].Tex.x  = 0.5f + mWaves[i].x / mWaves.Width();
		v[i].Tex.y  = 0.5f - mWaves[i].z / mWaves.Depth();
	}

	md3dImmediateContext->Unmap(mWavesVB, 0);

	//
	// Animate water texture coordinates.
	//

	// Tile water texture.
	XMMATRIX wavesScale = XMMatrixScaling(5.0f, 5.0f, 0.0f);

	// Translate texture over time.
	mWaterTexOffset.y += 0.05f*dt;
	mWaterTexOffset.x += 0.1f*dt;	
	XMMATRIX wavesOffset = XMMatrixTranslation(mWaterTexOffset.x, mWaterTexOffset.y, 0.0f);

	// Combine scale and translation.
	XMStoreFloat4x4(&mWaterTexTransform, wavesScale*wavesOffset);

	//
	// Switch the render mode based in key input.
	//
	if( GetAsyncKeyState('1') & 0x8000 )
		mRenderOptions = RenderOptions::Lighting; 

	if( GetAsyncKeyState('2') & 0x8000 )
		mRenderOptions = RenderOptions::Textures; 

	if( GetAsyncKeyState('3') & 0x8000 )
		mRenderOptions = RenderOptions::TexturesAndFog; 
}

void BlendApp::DrawScene()
{
	md3dImmediateContext->ClearRenderTargetView(mRenderTargetView, reinterpret_cast(&Colors::Silver));
	md3dImmediateContext->ClearDepthStencilView(mDepthStencilView, D3D11_CLEAR_DEPTH|D3D11_CLEAR_STENCIL, 1.0f, 0);

	md3dImmediateContext->IASetInputLayout(InputLayouts::Basic32);
    //md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
 
	float blendFactor[] = {0.0f, 0.0f, 0.0f, 0.0f};

	UINT stride = sizeof(Vertex::Basic32);
    UINT offset = 0;
 
	XMMATRIX view  = XMLoadFloat4x4(&mView);
	XMMATRIX proj  = XMLoadFloat4x4(&mProj);
	XMMATRIX viewProj = view*proj;

	// Set per frame constants.
	Effects::BasicFX->SetDirLights(mDirLights);
	Effects::BasicFX->SetEyePosW(mEyePosW);
	Effects::BasicFX->SetFogColor(Colors::Silver);
	Effects::BasicFX->SetFogStart(15.0f);
	Effects::BasicFX->SetFogRange(175.0f);
 
	ID3DX11EffectTechnique* boxTech;
	ID3DX11EffectTechnique* landAndWavesTech;

	switch(mRenderOptions)
	{
	case RenderOptions::Lighting:
		boxTech = Effects::BasicFX->Light3Tech;
		landAndWavesTech = Effects::BasicFX->Light3Tech;
		break;
	case RenderOptions::Textures:
		boxTech = Effects::BasicFX->Light3TexAlphaClipTech;
		landAndWavesTech = Effects::BasicFX->Light3TexTech;
		break;
	case RenderOptions::TexturesAndFog:
		boxTech = Effects::BasicFX->Light3TexAlphaClipFogTech;
		landAndWavesTech = Effects::BasicFX->Light3TexFogTech;
		break;
	}

	D3DX11_TECHNIQUE_DESC techDesc;

	//
	// Draw the box with alpha clipping.
	// 

	boxTech->GetDesc( &techDesc );
	for(UINT p = 0; p < techDesc.Passes; ++p)
    {
        if (0 == p)
        {
            md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_POINTLIST);
        }
        else
        {
            md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
        }
        
		md3dImmediateContext->IASetVertexBuffers(0, 1, &mBoxVB, &stride, &offset);
		md3dImmediateContext->IASetIndexBuffer(mBoxIB, DXGI_FORMAT_R32_UINT, 0);

		// Set per object constants.
		XMMATRIX world = XMLoadFloat4x4(&mBoxWorld);
		XMMATRIX worldInvTranspose = MathHelper::InverseTranspose(world);
		XMMATRIX worldViewProj = world*view*proj;
		
		Effects::BasicFX->SetWorld(world);
		Effects::BasicFX->SetWorldInvTranspose(worldInvTranspose);
		Effects::BasicFX->SetWorldViewProj(worldViewProj);
		Effects::BasicFX->SetTexTransform(XMMatrixIdentity());
		Effects::BasicFX->SetMaterial(mBoxMat);
		Effects::BasicFX->SetDiffuseMap(mBoxMapSRV);

		md3dImmediateContext->RSSetState(RenderStates::NoCullRS);
		boxTech->GetPassByIndex(p)->Apply(0, md3dImmediateContext);
		md3dImmediateContext->DrawIndexed(36, 0, 0);

		// Restore default render state.
		md3dImmediateContext->RSSetState(0);
	}

	//
	// Draw the hills and water with texture and fog (no alpha clipping needed).
	//

	landAndWavesTech->GetDesc( &techDesc );
    for(UINT p = 0; p < techDesc.Passes; ++p)
    {
        if (0 == p)
        {
            md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_POINTLIST);
        }
        else
        {
            md3dImmediateContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
        }
		//
		// Draw the hills.
		//
		md3dImmediateContext->IASetVertexBuffers(0, 1, &mLandVB, &stride, &offset);
		md3dImmediateContext->IASetIndexBuffer(mLandIB, DXGI_FORMAT_R32_UINT, 0);

		// Set per object constants.
		XMMATRIX world = XMLoadFloat4x4(&mLandWorld);
		XMMATRIX worldInvTranspose = MathHelper::InverseTranspose(world);
		XMMATRIX worldViewProj = world*view*proj;
		
		Effects::BasicFX->SetWorld(world);
		Effects::BasicFX->SetWorldInvTranspose(worldInvTranspose);
		Effects::BasicFX->SetWorldViewProj(worldViewProj);
		Effects::BasicFX->SetTexTransform(XMLoadFloat4x4(&mGrassTexTransform));
		Effects::BasicFX->SetMaterial(mLandMat);
		Effects::BasicFX->SetDiffuseMap(mGrassMapSRV);

		landAndWavesTech->GetPassByIndex(p)->Apply(0, md3dImmediateContext);
		md3dImmediateContext->DrawIndexed(mLandIndexCount, 0, 0);

		//
		// Draw the waves.
		//
		md3dImmediateContext->IASetVertexBuffers(0, 1, &mWavesVB, &stride, &offset);
		md3dImmediateContext->IASetIndexBuffer(mWavesIB, DXGI_FORMAT_R32_UINT, 0);

		// Set per object constants.
		world = XMLoadFloat4x4(&mWavesWorld);
		worldInvTranspose = MathHelper::InverseTranspose(world);
		worldViewProj = world*view*proj;
		
		Effects::BasicFX->SetWorld(world);
		Effects::BasicFX->SetWorldInvTranspose(worldInvTranspose);
		Effects::BasicFX->SetWorldViewProj(worldViewProj);
		Effects::BasicFX->SetTexTransform(XMLoadFloat4x4(&mWaterTexTransform));
		Effects::BasicFX->SetMaterial(mWavesMat);
		Effects::BasicFX->SetDiffuseMap(mWavesMapSRV);

		md3dImmediateContext->OMSetBlendState(RenderStates::TransparentBS, blendFactor, 0xffffffff);
		landAndWavesTech->GetPassByIndex(p)->Apply(0, md3dImmediateContext);
		md3dImmediateContext->DrawIndexed(3*mWaves.TriangleCount(), 0, 0);

		// Restore default blend state
		md3dImmediateContext->OMSetBlendState(0, blendFactor, 0xffffffff);
    }

	HR(mSwapChain->Present(0, 0));
}

void BlendApp::OnMouseDown(WPARAM btnState, int x, int y)
{
	mLastMousePos.x = x;
	mLastMousePos.y = y;

	SetCapture(mhMainWnd);
}

void BlendApp::OnMouseUp(WPARAM btnState, int x, int y)
{
	ReleaseCapture();
}

void BlendApp::OnMouseMove(WPARAM btnState, int x, int y)
{
	if( (btnState & MK_LBUTTON) != 0 )
	{
		// Make each pixel correspond to a quarter of a degree.
		float dx = XMConvertToRadians(0.25f*static_cast(x - mLastMousePos.x));
		float dy = XMConvertToRadians(0.25f*static_cast(y - mLastMousePos.y));

		// Update angles based on input to orbit camera around box.
		mTheta += dx;
		mPhi   += dy;

		// Restrict the angle mPhi.
		mPhi = MathHelper::Clamp(mPhi, 0.1f, MathHelper::Pi-0.1f);
	}
	else if( (btnState & MK_RBUTTON) != 0 )
	{
		// Make each pixel correspond to 0.01 unit in the scene.
		float dx = 0.1f*static_cast(x - mLastMousePos.x);
		float dy = 0.1f*static_cast(y - mLastMousePos.y);

		// Update the camera radius based on input.
		mRadius += dx - dy;

		// Restrict the radius.
		mRadius = MathHelper::Clamp(mRadius, 20.0f, 500.0f);
	}

	mLastMousePos.x = x;
	mLastMousePos.y = y;
}

float BlendApp::GetHillHeight(float x, float z)const
{
	return 0.3f*( z*sinf(0.1f*x) + x*cosf(0.1f*z) );
}

XMFLOAT3 BlendApp::GetHillNormal(float x, float z)const
{
	// n = (-df/dx, 1, -df/dz)
	XMFLOAT3 n(
		-0.03f*z*cosf(0.1f*x) - 0.3f*cosf(0.1f*z),
		1.0f,
		-0.3f*sinf(0.1f*x) + 0.03f*x*sinf(0.1f*z));
	
	XMVECTOR unitNormal = XMVector3Normalize(XMLoadFloat3(&n));
	XMStoreFloat3(&n, unitNormal);

	return n;
}

void BlendApp::BuildLandGeometryBuffers()
{
	GeometryGenerator::MeshData grid;
 
	GeometryGenerator geoGen;

	geoGen.CreateGrid(160.0f, 160.0f, 50, 50, grid);

	mLandIndexCount = grid.Indices.size();

	//
	// Extract the vertex elements we are interested and apply the height function to
	// each vertex.  
	//

	std::vector vertices(grid.Vertices.size());
	for(UINT i = 0; i < grid.Vertices.size(); ++i)
	{
		XMFLOAT3 p = grid.Vertices[i].Position;

		p.y = GetHillHeight(p.x, p.z);
		
		vertices[i].Pos    = p;
		vertices[i].Normal = GetHillNormal(p.x, p.z);
		vertices[i].Tex    = grid.Vertices[i].TexC;
	}

    D3D11_BUFFER_DESC vbd;
    vbd.Usage = D3D11_USAGE_IMMUTABLE;
	vbd.ByteWidth = sizeof(Vertex::Basic32) * grid.Vertices.size();
    vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
    vbd.CPUAccessFlags = 0;
    vbd.MiscFlags = 0;
    D3D11_SUBRESOURCE_DATA vinitData;
    vinitData.pSysMem = &vertices[0];
    HR(md3dDevice->CreateBuffer(&vbd, &vinitData, &mLandVB));

	//
	// Pack the indices of all the meshes into one index buffer.
	//

	D3D11_BUFFER_DESC ibd;
    ibd.Usage = D3D11_USAGE_IMMUTABLE;
	ibd.ByteWidth = sizeof(UINT) * mLandIndexCount;
    ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
    ibd.CPUAccessFlags = 0;
    ibd.MiscFlags = 0;
    D3D11_SUBRESOURCE_DATA iinitData;
	iinitData.pSysMem = &grid.Indices[0];
    HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mLandIB));
}

void BlendApp::BuildWaveGeometryBuffers()
{
	// Create the vertex buffer.  Note that we allocate space only, as
	// we will be updating the data every time step of the simulation.

    D3D11_BUFFER_DESC vbd;
    vbd.Usage = D3D11_USAGE_DYNAMIC;
	vbd.ByteWidth = sizeof(Vertex::Basic32) * mWaves.VertexCount();
    vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
    vbd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
    vbd.MiscFlags = 0;
    HR(md3dDevice->CreateBuffer(&vbd, 0, &mWavesVB));


	// Create the index buffer.  The index buffer is fixed, so we only 
	// need to create and set once.

	std::vector indices(3*mWaves.TriangleCount()); // 3 indices per face

	// Iterate over each quad.
	UINT m = mWaves.RowCount();
	UINT n = mWaves.ColumnCount();
	int k = 0;
	for(UINT i = 0; i < m-1; ++i)
	{
		for(DWORD j = 0; j < n-1; ++j)
		{
			indices[k]   = i*n+j;
			indices[k+1] = i*n+j+1;
			indices[k+2] = (i+1)*n+j;

			indices[k+3] = (i+1)*n+j;
			indices[k+4] = i*n+j+1;
			indices[k+5] = (i+1)*n+j+1;

			k += 6; // next quad
		}
	}

	D3D11_BUFFER_DESC ibd;
    ibd.Usage = D3D11_USAGE_IMMUTABLE;
	ibd.ByteWidth = sizeof(UINT) * indices.size();
    ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
    ibd.CPUAccessFlags = 0;
    ibd.MiscFlags = 0;
    D3D11_SUBRESOURCE_DATA iinitData;
    iinitData.pSysMem = &indices[0];
    HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mWavesIB));
}

void BlendApp::BuildCrateGeometryBuffers()
{
	GeometryGenerator::MeshData box;

	GeometryGenerator geoGen;
	geoGen.CreateBox(1.0f, 1.0f, 1.0f, box);

	//
	// Extract the vertex elements we are interested in and pack the
	// vertices of all the meshes into one vertex buffer.
	//

	std::vector vertices(box.Vertices.size());

	for(UINT i = 0; i < box.Vertices.size(); ++i)
	{
		vertices[i].Pos    = box.Vertices[i].Position;
		vertices[i].Normal = box.Vertices[i].Normal;
		vertices[i].Tex    = box.Vertices[i].TexC;
	}

    D3D11_BUFFER_DESC vbd;
    vbd.Usage = D3D11_USAGE_IMMUTABLE;
    vbd.ByteWidth = sizeof(Vertex::Basic32) * box.Vertices.size();
    vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
    vbd.CPUAccessFlags = 0;
    vbd.MiscFlags = 0;
    D3D11_SUBRESOURCE_DATA vinitData;
    vinitData.pSysMem = &vertices[0];
    HR(md3dDevice->CreateBuffer(&vbd, &vinitData, &mBoxVB));

	//
	// Pack the indices of all the meshes into one index buffer.
	//

	D3D11_BUFFER_DESC ibd;
    ibd.Usage = D3D11_USAGE_IMMUTABLE;
	ibd.ByteWidth = sizeof(UINT) * box.Indices.size();
    ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
    ibd.CPUAccessFlags = 0;
    ibd.MiscFlags = 0;
    D3D11_SUBRESOURCE_DATA iinitData;
    iinitData.pSysMem = &box.Indices[0];
    HR(md3dDevice->CreateBuffer(&ibd, &iinitData, &mBoxIB));
}

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第13张图片

Introdution to 3D Game Programming With DirectX11 第11章 习题解答_第14张图片


11.6-11.7注意那个DrawIndexed要自己create index buffer,因为是改原有代码,所以也没贴代码,还有要注意的是那个纹理地址越界时开始几个纹理太小了,可能以为所有纹理都一样,其实不是的,仔细看前四个小树,是有区别的

你可能感兴趣的:(C/C++,DX11,DX11,c++,directx11,game)