- 使用Docker安装Spark集群(带有HDFS)
Sicilly_琬姗
云计算大数据dockersparkhdfs
本实验在CentOS7中完成第一部分:安装Docker这一部分是安装Docker,如果机器中已经安装过Docker,可以直接跳过[root@VM-48-22-centos~]#systemctlstopfirewalld[root@VM-48-22-centos~]#systemctldisablefirewalld[root@VM-48-22-centos~]#systemctlstatusfi
- 使用Docker部署Spark集群
小孩真笨
工程开发技术CloudDataDockerSpark
使用Docker部署Spark集群克隆包含启动脚本的git仓库启动Spark0.8.0集群并切换至SparkShell环境不带参数运行部署脚本*运行一些小的例子终止集群克隆包含启动脚本的git仓库*
[email protected]:amplab/docker-scripts.git当然,在这之前你必须已经配置了Github的SSH密钥认证,如果没有配置,会提示Per
- 从0开始使用Docker搭建Spark集群
吃鱼的羊
SPARKHadoop
https://www.jianshu.com/p/ee210190224f?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation最近在学习大数据技术,朋友叫我直接学习Spark,英雄不问出处,菜鸟不问对错,于是我就开始了Spark学习。为什么要在Docker上搭建Spark集群
- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- 深入浅出了解HBase及RDD编程
山海王子
大数据hbase
深入浅出了解HBaseHBase简介架构HBase是什么样的数据库?关键是数据模型关键要素:什么是单元格时间戳的功能是什么?HBase为什么能存储海量数据创建一个HBase表配置Spark编写程序读取HBase数据编写程序向HBase写入数据关于搭建HBase高可用集群的图文教程,可参考我的另一篇博文——安装并配置HBase集群(5个节点)。HBase简介HBase是GoogleBigTable的
- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- 【Redis】golang操作Redis基础入门
寸 铁
go数据库Redisredisgolang数据库CRUD基本操作分布式键值对
【Redis】golang操作Redis基础入门大家好我是寸铁总结了一篇【Redis】golang操作Redis基础入门sparkles:喜欢的小伙伴可以点点关注Redis的作用Redis(RemoteDictionaryServer)是一个开源的内存数据库,它主要用于存储键值对,并提供多种数据结构的支持。Redis的主要作用包括:1.缓存:Redis可以作为缓存系统,将常用的数据缓存在内存中,以
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- spark-广播变量
哈哈哈哈q
+sparkhdfshadoop大数据spark
当本地数据极大的时候,可以使用广播变量,使得减少内存。本地集合对象和分布式集合对象(RDD)进行关联的时候,需要将本地集合对象广播变量。本地的数据传输到集群上,会发到每一个线程,每一个分区。每一个进程executor,有多个线程分区,进程内的线程数据共享因此,给每一个线程发送数据会导致数据占用,浪费资源。所有,出现了广播变量,使得只发送给进程代码使用:broadcast=sc.broadcast(
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- maven插件学习(maven-shade-plugin和maven-antrun-plugin插件)
catcher92
javamavenmaven学习大数据
整合spark3.3.x和hive2.1.1-cdh6.3.2碰到个问题,就是spark官方支持的hive是2.3.x,但是cdh中的hive确是2.1.x的,项目中又计划用spark-thrift-server,导致编译过程中有部分报错。其中OperationLog这个类在hive2.3中新增加了几个方法,导致编译报错。这个时候有两种解决办法:修改spark源码,注释掉调用OperationLo
- 使用SparkLLM实现智能聊天:技术原理与实战演示
shuoac
java
在本篇文章中,我们将探讨如何使用iFlyTek的SparkLLM模型来实现智能聊天功能。我们将详细介绍SparkLLM的技术背景、核心原理,并通过实际代码展示如何进行实现。另外,还会分析应用场景并给出一些实践建议。技术背景介绍SparkLLM是由iFlyTek提供的一种强大的语言模型,支持多种语言生成任务。它能够理解并生成自然语言,适用于对话系统、内容生成、智能客服等场景。核心原理解析SparkL
- Spark 性能优化 (三):RBO 与 CBO
LevenBigData
spark性能调优spark性能优化ajax
1.RBO的核心概念在ApacheSpark的查询优化过程中,规则优化(Rule-BasedOptimization,RBO)是Catalyst优化器的一个关键组成部分。它主要依赖于一组固定的规则进行优化,而不是基于统计信息(如CBO-Cost-BasedOptimization)。RBO主要通过一系列逻辑规则(LogicalRules)和物理规则(PhysicalRules)来转换和优化查询计划
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- java获取hive表所有字段,Hive Sql从表中动态获取空列计数
拾亿年
java获取hive表所有字段
我正在使用datastaxspark集成和sparkSQLthrift服务器,它为我提供了一个HiveSQL接口来查询Cassandra中的表.我的数据库中的表是动态创建的,我想要做的是仅根据表名在表的每列中获取空值的计数.我可以使用describedatabase.table获取列名,但在hiveSQL中,如何在另一个为所有列计数null的select查询中使用其输出.更新1:使用Dudu的解决
- PySpark查询Dataframe中包含乱码的数据记录的方法
weixin_30777913
python大数据spark
首先,用PySpark获取Dataframe中所有非ASCII字符,找到其中的非乱码字符。frompyspark.sqlimportSparkSessionfrompyspark.sql.functionsimportcol,concat_ws,explode,split,coalesce,litfrompyspark.sql.typesimportStringTypespark=SparkSes
- spark streaming基础操作
天选之子123
大数据spark大数据分布式
sparkstreaming基础操作一、什么是sparkstreamingSparkStreaming用于流式数据的处理。SparkStreaming使用离散化流(discretized作为抽象表示,叫作DStream。DStream是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为RDD存在,而DStream是由这些RDD所组成的序列(因此得名“离散化”)。简单来说,DStre
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- Spark源码分析
数据年轮
Sparkspark源码spark大数据源码分析
过程描述:1.通过Shell脚本启动Master,Master类继承Actor类,通过ActorySystem创建并启动。2.通过Shell脚本启动Worker,Worker类继承Actor类,通过ActorySystem创建并启动。3.Worker通过Akka或者Netty发送消息向Master注册并汇报自己的资源信息(内存以及CPU核数等),以后就是定时汇报,保持心跳。4.Master接受消息
- Spark 源码 | 脚本分析总结
董可伦
spark源码脚本
前言最初是想学习一下Spark提交流程的源码,比如SparkOnYarn、Standalone。之前只是通过网上总结的文章大概了解整体的提交流程,但是每个文章描述的又不太一样,弄不清楚到底哪个说的准确,比如Client和CLuster模式的区别,Driver到底是干啥的,是如何定义的,为了彻底弄清楚这些疑问,所以决定学习一下相关的源码。因为不管是服务启动还是应用程序启动,都是通过脚本提交的,所以我
- Spark性能调优-----常规性能调优(一)最优资源配置
weidajiangjiang
spark性能调优常规资源配置
1.1.1常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:代码清单2-1标准Spark提交脚本/usr/opt/modules/spark/bin
- Spark性能调优系列:Spark资源模型以及调优
Mr Cao
大数据sparkSpark性能调优
Spark资源模型Spark内存模型Spark在一个Executor中的内存分为三块,execution内存、storage内存、other内存。execution内存是执行内存,join、aggregate都在这部分中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO,Map过程也是在这个内存中执行的。(0.25)storage内存是存储broadcast,cache
- spark 性能调优 (一):执行计划
LevenBigData
spark性能调优spark大数据
在Spark中,explain函数用于提供数据框(DataFrame)或SQL查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解Spark是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。1.逻辑计划(LogicalPlan)逻辑计划代表了Spark将应用于处理数据的抽象操作序列。它是基于用户提供的DataFrameAPI或SQL查询,经过优化前的中间表示。未优化的逻辑
- spark技术基础知识
24k小善
spark服务器
1.Spark的宽窄依赖划分Q:Spark中如何划分宽依赖和窄依赖?A:窄依赖:父RDD的每个分区最多被一个子RDD的分区依赖(如map、filter),不会触发shuffle。宽依赖:父RDD的每个分区可能被多个子RDD的分区依赖(如groupByKey、reduceByKey),会触发shuffle。Q:宽依赖和窄依赖对性能的影响是什么?A:窄依赖:计算效率高,数据不需要跨节点传输。宽依赖:涉
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号