验证码识别

转载与http://blog.topspeedsnail.com/archives/10858

本文实现了验证码是识别,这里对captcha库生成的验证码有效,尝试了几次自己下载的验证码,感觉不是太好!

一、生成验证码

from captcha.image import ImageCaptcha  # pip install captcha  
import numpy as np  
import matplotlib.pyplot as plt  
from PIL import Image  
import random  

# 验证码中的字符, 就不用汉字了  
number = ['0','1','2','3','4','5','6','7','8','9']  
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']  
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']  
# 验证码一般都无视大小写;验证码长度4个字符  
def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):  
    captcha_text = []  
    for i in range(captcha_size):  
        c = random.choice(char_set)  
        captcha_text.append(c)  
    return captcha_text  

# 生成字符对应的验证码  
def gen_captcha_text_and_image():  
    image = ImageCaptcha()  

    captcha_text = random_captcha_text()  
    captcha_text = ''.join(captcha_text)  # 用字符['m', 'i', 'R', 'd']转化为miRd

    captcha = image.generate(captcha_text)   # 将captcha_text转化为图片
    # image.write(captcha_text, captcha_text + '.jpg')  # 写到文件  

    captcha_image = Image.open(captcha) 
    # captcha_image.show()
    captcha_image = np.array(captcha_image) 

    return captcha_text, captcha_image 


# if __name__ == '__main__':  
#     # 测试  
#     text, image = gen_captcha_text_and_image()  

#     f = plt.figure()  
#     ax = f.add_subplot(111)  
#     ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes)  
#     plt.imshow(image)  

#     plt.show()  

二、训练

from gen_captcha import gen_captcha_text_and_image  
from gen_captcha import number  
from gen_captcha import alphabet  
from gen_captcha import ALPHABET  

import numpy as np  
import tensorflow as tf  

text, image = gen_captcha_text_and_image()  
print("验证码图像channel:", image.shape)  # (60, 160, 3)  
# 图像大小  
IMAGE_HEIGHT = 60  
IMAGE_WIDTH = 160  
MAX_CAPTCHA = len(text)  
print("验证码文本最长字符数", MAX_CAPTCHA)   # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐  

# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)  
def convert2gray(img):  
    if len(img.shape) > 2:  
        gray = np.mean(img, -1)  
        # 上面的转法较快,正规转法如下  
        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]  
        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b  
        return gray  
    else:  
        return img  

""" 
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。 
np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行 
"""  

# 文本转向量  
char_set = number + alphabet + ALPHABET + ['_']  # 如果验证码长度小于4, '_'用来补齐  
CHAR_SET_LEN = len(char_set)  
def text2vec(text):  
    text_len = len(text)  
    if text_len > MAX_CAPTCHA:  
        raise ValueError('验证码最长4个字符')  

    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)  
    def char2pos(c):  
        if c =='_':  
            k = 62  
            return k  
        k = ord(c)-48  
        if k > 9:  
            k = ord(c) - 55  
            if k > 35:  
                k = ord(c) - 61  
                if k > 61:  
                    raise ValueError('No Map')   
        return k  
    for i, c in enumerate(text):  
        idx = i * CHAR_SET_LEN + char2pos(c)  
        vector[idx] = 1  
    return vector  
# 向量转回文本  
def vec2text(vec):  
    char_pos = vec.nonzero()[0]   # 显示vec中非0值的位置
    text=[]  
    for i, c in enumerate(char_pos):   # enumerate(char_pos)将字符串分离成位置和字符
        char_at_pos = i #c/63  
        char_idx = c % CHAR_SET_LEN  
        if char_idx < 10:  
            char_code = char_idx + ord('0')  
        elif char_idx <36:  
            char_code = char_idx - 10 + ord('A')  
        elif char_idx < 62:  
            char_code = char_idx-  36 + ord('a')  
        elif char_idx == 62:  
            char_code = ord('_')  
        else:  
            raise ValueError('error')  
        text.append(chr(char_code))  
    return "".join(text)  

""" 
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 
vec = text2vec("F5Sd") 
text = vec2text(vec) 
print(text)  # F5Sd 
vec = text2vec("SFd5") 
text = vec2text(vec) 
print(text)  # SFd5 
"""  

# 生成一个训练batch  
def get_next_batch(batch_size=128):  
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])  
    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])  

    # 有时生成图像大小不是(60, 160, 3)  
    def wrap_gen_captcha_text_and_image():  
        while True:  
            text, image = gen_captcha_text_and_image()  
            if image.shape == (60, 160, 3):  
                return text, image  

    for i in range(batch_size):  
        text, image = wrap_gen_captcha_text_and_image()  
        image = convert2gray(image)  

        batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128  mean为0  
        batch_y[i,:] = text2vec(text)  

    return batch_x, batch_y  

####################################################################  

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])  
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])  
keep_prob = tf.placeholder(tf.float32) # dropout  

# 定义CNN  
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):  
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])  

    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #  
    #w_c2_alpha = np.sqrt(2.0/(3*3*32))   
    #w_c3_alpha = np.sqrt(2.0/(3*3*64))   
    #w_d1_alpha = np.sqrt(2.0/(8*32*64))  
    #out_alpha = np.sqrt(2.0/1024)  

    # 3 conv layer  
    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))  
    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))  
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))  
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv1 = tf.nn.dropout(conv1, keep_prob)  

    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))  
    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))  
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv2 = tf.nn.dropout(conv2, keep_prob)  

    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))  
    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))  
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv3 = tf.nn.dropout(conv3, keep_prob)  

    # Fully connected layer  
    w_d = tf.Variable(w_alpha*tf.random_normal([8*32*40, 1024]))  
    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))  
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])  
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))  
    dense = tf.nn.dropout(dense, keep_prob)  

    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))  
    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))  
    out = tf.add(tf.matmul(dense, w_out), b_out)  
    #out = tf.nn.softmax(out)  
    return out  

# 训练  
def train_crack_captcha_cnn():  
    output = crack_captcha_cnn()  
    # loss  
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))  
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y))  
        # 最后一层用来分类的softmax和sigmoid有什么不同?  
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰  
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)  

    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])  
    max_idx_p = tf.argmax(predict, 2)  
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)  
    correct_pred = tf.equal(max_idx_p, max_idx_l)  
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))  

    saver = tf.train.Saver()  
    with tf.Session() as sess:  
        sess.run(tf.global_variables_initializer())  

        step = 0  
        while True:  
            batch_x, batch_y = get_next_batch(64)  
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})  
            print(step, loss_)  

            # 每100 step计算一次准确率  
            if step % 100 == 0:  
                batch_x_test, batch_y_test = get_next_batch(100)  
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})  
                print(step, acc)  
                # 如果准确率大于50%,保存模型,完成训练  
                if acc > 0.8:  
                    saver.save(sess, "./crack_capcha.model", global_step=step)  
                    break  

            step += 1  
train_crack_captcha_cnn()

三、验证

def crack_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint('.'))
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        print(text_list)
        text = text_list[0].tolist()
        print(text)
        vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
        i = 0
        for n in text:
                vector[i*CHAR_SET_LEN + n] = 1
                i += 1
        print(vector)
        return vec2text(vector)



text, image = gen_captcha_text_and_image()
image = convert2gray(image)
image = image.flatten() / 255
predict_text = crack_captcha(image)
print("正确: {}  预测: {}".format(text, predict_text)) 

你可能感兴趣的:(深度学习)