分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
使用Matlab进行拟合是图像处理中线条变换的一个重点内容,本文将详解Matlab中的直线拟合和曲线拟合用法。
关键函数:
Fit type for curve and surface fitting
/***********************************线性拟合***********************************/
线性拟合公式:
coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ...其中,coefficient是系数,term都是x的一次项。
线性拟合Example:
Example1: y=kx+b;
法1:
x=[1,1.5,2,2.5,3];y=[0.9,1.7,2.2,2.6,3];p=polyfit(x,y,1);x1=linspace(min(x),max(x));y1=polyval(p,x1);plot(x,y,'*',x1,y1);
结果:p = 1.0200 0.0400
即y=1.0200 *x+ 0.0400
法2:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3];p=fittype('poly1')f=fit(x,y,p)plot(f,x,y);
运行结果:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3];p=fittype('poly1')f=fit(x,y,p)plot(f,x,y);p = Linear model Poly1: p(p1,p2,x) = p1*x + p2f = Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = 1.02 (0.7192, 1.321) p2 = 0.04 (-0.5981, 0.6781)
法1:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3];EXPR = {'x','sin(x)','1'};p=fittype(EXPR)f=fit(x,y,p)plot(f,x,y);
运行结果:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3];EXPR = {'x','sin(x)','1'};p=fittype(EXPR)f=fit(x,y,p)plot(f,x,y);p = Linear model: p(a,b,c,x) = a*x + b*sin(x) + cf = Linear model: f(x) = a*x + b*sin(x) + c Coefficients (with 95% confidence bounds): a = 1.249 (0.9856, 1.512) b = 0.6357 (0.03185, 1.24) c = -0.8611 (-1.773, 0.05094)
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3]; p=fittype('a*x+b*sin(x)+c','independent','x')f=fit(x,y,p)plot(f,x,y);
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3]; p=fittype('a*x+b*sin(x)+c','independent','x')f=fit(x,y,p)plot(f,x,y);p = General model: p(a,b,c,x) = a*x+b*sin(x)+cWarning: Start point not provided, choosing random startpoint. > In fit>iCreateWarningFunction/nThrowWarning at 738 In fit>iFit at 320 In fit at 109 f = General model: f(x) = a*x+b*sin(x)+c Coefficients (with 95% confidence bounds): a = 1.249 (0.9856, 1.512) b = 0.6357 (0.03185, 1.24) c = -0.8611 (-1.773, 0.05094)
/***********************************非线性拟合***********************************/
Example:y=a*x^2+b*x+c
法1:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3]; p=fittype('a*x.^2+b*x+c','independent','x')f=fit(x,y,p)plot(f,x,y);
p = General model: p(a,b,c,x) = a*x.^2+b*x+cWarning: Start point not provided, choosing random startpoint. > In fit>iCreateWarningFunction/nThrowWarning at 738 In fit>iFit at 320 In fit at 109 f = General model: f(x) = a*x.^2+b*x+c Coefficients (with 95% confidence bounds): a = -0.2571 (-0.5681, 0.05386) b = 2.049 (0.791, 3.306) c = -0.86 (-2.016, 0.2964)
法2:
x=[1;1.5;2;2.5;3];y=[0.9;1.7;2.2;2.6;3];%use c=0;c=0;p1=fittype(@(a,b,x) a*x.^2+b*x+c)f1=fit(x,y,p1)%use c=1;c=1;p2=fittype(@(a,b,x) a*x.^2+b*x+c)f2=fit(x,y,p2)%predict cp3=fittype(@(a,b,c,x) a*x.^2+b*x+c)f3=fit(x,y,p3)%show resultsscatter(x,y);%scatter pointc1=plot(f1,'b:*');%bluehold onplot(f2,'g:+');%greenhold onplot(f3,'m:*');%purplehold off