MapReduce 实现 join 文件数据(四)

我们都知道,当对两个表进行关联的时候可以用sql的join语句简单的去实现,并且如果两张表的数据查询非常大,那么一般会讲小表放在左边,可以达到优化的作用,为何呢?其实我们在使用mapreduce的时候小表可以先加载到内存中,然后再与输入数据进行对比,如果匹配成功则关联输出。今天我们将介绍使用mapreduce中mapjoin与reducejoin两种方式对数据的关联并输出。
一、先看数据:
MapReduce 实现 join 文件数据(四)_第1张图片
image.png
我们分别将两个数据文件放到hdfs上:
MapReduce 实现 join 文件数据(四)_第2张图片
image.png
二、以 order 作为小表在 map 中进行 join,首先我们创建驱动类框架:
public class MapJoinRM extends Configured implements Tool {

    //加载到内存中的对象
    static Map customerMap = new HashMap();

    public int run(String[] args) throws Exception {

        //driver
        //1) 获取配置对象
        Configuration configuration = this.getConf();

        //2) 创建任务对象
        Job job = Job.getInstance(configuration, this.getClass().getSimpleName());
        job.setJarByClass(this.getClass());

        //3.1) 设置输入
        Path path = new Path(args[0]);
        FileInputFormat.addInputPath(job, path);

        //3.2) map 的设置
        job.setMapperClass(JoinMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        //3.3 reduce 设置

        //3.4 添加缓存
        URI uri = new URI(args[2]);
        job.addCacheFile(uri);

        //3.5 设置输出
        Path output = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, output);

        //4. 提交
        boolean sucess = job.waitForCompletion(true);
        return sucess ? 0 : 1;
    }

    public static void main(String[] args) {

        args = new String[]{
                "hdfs://bigdata-pro01.lcy.com:9000/user/hdfs/order.txt",
                "hdfs://bigdata-pro01.lcy.com:9000/user/hdfs/output66",
                "hdfs://bigdata-pro01.lcy.com:9000/user/hdfs/customer.txt"
        };

        Configuration configuration = new Configuration();
        try {
            //判断是否已经存在路径
            Path fileOutputPath = new Path(args[1]);
            FileSystem fileSystem = FileSystem.get(configuration);
            if(fileSystem.exists(fileOutputPath)){
                fileSystem.delete(fileOutputPath, true);
            }

            int status = ToolRunner.run(configuration, new MapJoinRM(), args);
            System.exit(status);
        } catch (Exception e) {
            e.printStackTrace();
        }

    }

}

三、实现 mapper 子类处理缓存数据以及关联逻辑的实现:
public static class JoinMapper extends Mapper{

        private Text outputKey = new Text();
        private Text outputValue = new Text();
  
        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            //缓存数据的处理
            Configuration configuration = context.getConfiguration();
            URI[] uri = Job.getInstance(configuration).getCacheFiles();
            Path path = new Path(uri[0]);
            FileSystem fileSystem = FileSystem.get(configuration);
            InputStream inputStream = fileSystem.open(path);

            InputStreamReader inputStreamReader = new InputStreamReader(inputStream);
            BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

            String line = null;
            while((line = bufferedReader.readLine()) != null){
                if(line.trim().length() > 0){
                    customerMap.put(line.split(",")[0], line);
                }
            }

            bufferedReader.close();
            inputStreamReader.close();
            inputStream.close();
        }

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            String lineValue = value.toString();
            StringTokenizer stringTokenizer = new StringTokenizer(lineValue, ",");
            while(stringTokenizer.hasMoreTokens()){
                String wordValue = stringTokenizer.nextToken();
                if(customerMap.get(wordValue) != null){
                    outputKey.set(wordValue);
                    outputValue.set(customerMap.get(wordValue) + lineValue);
                    context.write(outputKey, outputValue);
                    break;
                }
            }

        }

        @Override
        protected void cleanup(Context context) throws IOException, InterruptedException {

        }
    }
四、运行程序并在控制台中命令查看关联结果:
bin/hdfs dfs -text /user/hdfs/output66/part*

运行结果如图:


MapReduce 实现 join 文件数据(四)_第3张图片
image.png

大小表的关联就这么简单,接下来我们使用 reduce 的进行 join

五、由于在 reduce 中进行 join 的话是同时加载两个数据进来的,为了区分从 map 中传进来的数据,我们要自定义一个类型,设置一个变量用于标识是哪张表的数据,这样我们在reduce中才能区分哪些数据是属于哪张表的:
public class DataJoionWritable implements Writable {

    private String tag;
    private String data;

    public DataJoionWritable() {
    }

    public DataJoionWritable(String tag, String data) {
       this.set(tag, data);
    }

    public void set(String tag, String data){
        this.tag = tag;
        this.data = data;
    }

    public void write(DataOutput dataOutput) throws IOException {

        dataOutput.writeUTF(this.getTag());
        dataOutput.writeUTF(this.getData());

    }

    public void readFields(DataInput dataInput) throws IOException {

        this.setTag(dataInput.readUTF());
        this.setData(dataInput.readUTF());

    }

    public String getTag() {
        return tag;
    }

    public void setTag(String tag) {
        this.tag = tag;
    }

    public String getData() {
        return data;
    }

    public void setData(String data) {
        this.data = data;
    }

    @Override
    public String toString() {
        return "DataJoionWritable{" +
                "tag='" + tag + '\'' +
                ", data='" + data + '\'' +
                '}';
    }

}
六、为了方便使用表示常量我们创建一个常用类:
public class DataCommon {

    public final static String CUSTOMER = "customer";
    public final static String ORDER = "order";

}
七、创建驱动类的通用框架:
public class ReduceJoinMR extends Configured implements Tool {

    public int run(String args[]) throws IOException, ClassNotFoundException, InterruptedException {

        //driver
        //1) 获取配置对象
        Configuration configuration = this.getConf();

        //2) 创建任务对象
        Job job = Job.getInstance(configuration, this.getClass().getSimpleName());
        job.setJarByClass(this.getClass());

        //3.1) 设置输入
        Path path = new Path(args[0]);
        FileInputFormat.addInputPath(job, path);

        //3.2) map 的设置
        job.setMapperClass(JoinMapper2.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataJoionWritable.class);

        //3.3 reduce 设置
        job.setReducerClass(JoinReduce2.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(Text.class);

        //3.4 设置输出
        Path output = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, output);

        //4. 提交
        boolean sucess = job.waitForCompletion(true);
        return sucess ? 0 : 1;
    }


    public static void main(String[] args) {
        //datas目录下有已存在要关联的两个数据文件
        args = new String[]{
                "hdfs://bigdata-pro01.lcy.com:9000/user/hdfs/datas",
                "hdfs://bigdata-pro01.lcy.com:9000/user/hdfs/output100"
        };

        Configuration configuration = new Configuration();
        try {
            //判断是否已经存在路径
            Path fileOutputPath = new Path(args[1]);
            FileSystem fileSystem = FileSystem.get(configuration);
            if(fileSystem.exists(fileOutputPath)){
                fileSystem.delete(fileOutputPath, true);
            }

            int status = ToolRunner.run(configuration, new ReduceJoinMR(), args);
            System.exit(status);
        } catch (Exception e) {
            e.printStackTrace();
        }

    }

}

八、接下来我们开始实现 Mapper 的数据逻辑的处理:
public static class JoinMapper2 extends Mapper{

        private Text outputKey = new Text();
        DataJoionWritable outputValue = new DataJoionWritable();

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {

        }

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            String[] values = value.toString().split(",");
            if((3 != values.length) && (4 != values.length)) return;

            //customer
            if(3 == values.length){
                String cid = values[0];
                String name = values[1];
                String telphone = values[2];
                outputKey.set(cid);
                outputValue.set(DataCommon.CUSTOMER,name + ","+telphone);
            }

            //order
            if(4 == values.length){
                String cid = values[1];
                String price = values[2];
                String productName = values[3];
                outputKey.set(cid);
                outputValue.set(DataCommon.ORDER,productName + ","+price);
            }

            context.write(outputKey,outputValue);

        }

        @Override
        protected void cleanup(Context context) throws IOException, InterruptedException {

        }
    }

九、使用 reduce 对数据的关联处理:
public static class JoinReduce2 extends Reducer{

        private  Text outputValue = new Text();

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {

        }

        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {

            String customerInfo = null;
            List orderList = new ArrayList();

            for (DataJoionWritable dataJoinWritable : values){
                if(DataCommon.CUSTOMER.equals(dataJoinWritable.getTag())){
                    customerInfo = dataJoinWritable.getData();
                }
                else if(DataCommon.ORDER.equals(dataJoinWritable.getTag())){
                    orderList.add(dataJoinWritable.getData());
                }
            }

            for (String orderInfo : orderList){
                if(customerInfo == null) continue;
                outputValue.set(key.toString() +","+ customerInfo + ","+ orderInfo);
                context.write(NullWritable.get(),outputValue);
            }

        }

        @Override
        protected void cleanup(Context context) throws IOException, InterruptedException {

        }
    }

十、使用命令查询结果如下:
MapReduce 实现 join 文件数据(四)_第4张图片
image.png

由于时间过于紧迫,基本上就粘贴代码了,后续会优化,在此感谢老师的思路。。。

你可能感兴趣的:(MapReduce 实现 join 文件数据(四))