统计学之算术平均数、调和平均数、几何平均数、位置平均数详解

——笔记总结自中国大学MOOC
算术平均数
作用:消除个体标志值之间的差异,体现出总体的一般水平。
计算方法:

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第1张图片

加权算术平均数计算公式:
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第2张图片
分组数据中,x表示各组水平值,f代表各组变量值出现的频数。

例子:
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第3张图片
性质:

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第4张图片
优缺点:
优点
推算总体标志总量 进行代数运算 抽样中具有良好的稳定性和可靠性
缺点
受极值影响较大

调和平均数

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第5张图片
例子:

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第6张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第7张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第8张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第9张图片
加权调和平均数统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第10张图片
调和平均数特点:
受极小值影响相对更大
不能有0
运用相对较窄

几何平均数
1.简单几何平均数
计算公式:在这里插入图片描述
适用对象:计算平均比率或平均发展速度

2.加权几何平均数
在这里插入图片描述
fi代表各个变量值出现的次数

例子:
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第11张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第12张图片
几何平均数特点:
受极值影响较算术平均数小
不能有零和负值

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第13张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第14张图片
位置平均数
定义:
特殊位置上的数据作为代表值。
常用的位置平均数有中位数、众数。

组距数列计算中位数例子:
某企业50名工人加工零件如下表,计算50名工人日加工零件数的中位数 。

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第15张图片
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第16张图片
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第17张图片
中位数特点:
不受极值影响
缺乏敏感性

分位数:
处于等分点位置的数值
常用的有四分位数、十分位数和百分位数

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第18张图片
众数:
离散型数据的众数
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第19张图片
数值型分组数据的众数

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第20张图片

统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第21张图片
众数的特点:
不受极值影响
均匀分布无众数
众数偏向次数较多的组
缺乏敏感性

适度偏态时,有
在这里插入图片描述
皮尔逊经验:众数与算术平均数的距离约为中位数与算术平均数距离的3倍。

例子:
一组技术人员月薪的众数为7000元,算术平均 数为10000元,适度偏斜时中位数近似值是多少?
统计学之算术平均数、调和平均数、几何平均数、位置平均数详解_第22张图片

你可能感兴趣的:(统计学,统计学)