Codeforces 1307 C. Cow and Message(DP)

Codeforces 1307 C. Cow and Message(DP)_第1张图片
Codeforces 1307 C. Cow and Message(DP)_第2张图片

题意:

给你一个字符串,让你找出其中出现最多次数的子串出现的次数。题目中所说的子串是等差数列的子串,也就是说下标应该是等差数列。

如果出现次数最多的隐藏字符串的长度大于 2 2 2,则必须存在一个恰好是长度2的相同倍的字符串。 不会有任何碰撞。 因此,我们只需要检查长度为 1 1 1 2 2 2 的字符串。检查长度为 1 1 1 的字符串很容易。 要检查长度为 2 2 2 的字符串,我们可以从左到右遍历 S S S 并使用 D P DP DP 更新我们看到的长度为 1 1 1 2 2 2 的每个字符串的次数。

AC代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d\n", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
    int ret = 0, sgn = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            sgn = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    }
    return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{
    if (a > 9)
        Out(a / 10);
    putchar(a % 10 + '0');
}

ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b)
{
    return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(ll a, ll b, ll mod)
{
    if (a >= mod)
        a = a % mod + mod;
    ll ans = 1;
    while (b)
    {
        if (b & 1)
        {
            ans = ans * a;
            if (ans >= mod)
                ans = ans % mod + mod;
        }
        a *= a;
        if (a >= mod)
            a = a % mod + mod;
        b >>= 1;
    }
    return ans;
}

// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
    return qpow(a, p - 2, p);
}

///扩展欧几里得
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll g = exgcd(b, a % b, x, y);
    ll t = x;
    x = y;
    y = t - a / b * y;
    return g;
}

ll dp1[30], dp2[30][30];
string s;
ll ans;
int main()
{
    cin >> s;
    rep(i, 0, s.length()-1)
    {
        int c = s[i] - 'a';
        rep(j, 0, 25)
            dp2[j][c] += dp1[j];
        dp1[c]++; 
    }
    ans = 0;
    rep(i, 0, 25)
        ans = max(ans, dp1[i]);
    rep(i, 0, 25)
        rep(j, 0, 25)
            ans = max(ans, dp2[i][j]);
    pld(ans);
    return 0;
}

你可能感兴趣的:(DP,CodeForces)