这次试验是在python的环境下使用sift,即尺度不变特征变换,来进行实验,对比两张图像的特征点匹配,后面也会涉及到关于Harris角点与Sift的效果对比。
SIFT算法在解决特征匹配的问题上被称为是过去的十年来最为成功的图像局部描述子之一。SIFT算法之所以如此成功、流行,其稳定性扮演至关重要的角色。与Harris角点相比,SIFT算法在图像的尺度、旋转、亮度都展现出它自身强大的稳定性。网络上关于SIFT的具体步骤有许多专业文章,对SIFT有着更为详细解读。链接:SIFT特征详解。有兴趣的读者可以去阅读
SIFT实现可以大致分为四步
Harris算法实现代码:
#encoding:utf-8
from pylab import *
from PIL import Image
from PCV.localdescriptors import harris
from PCV.tools.imtools import imresize
"""
This is the Harris point matching example in Figure 2-2.
"""
# Figure 2-2上面的图
#im1 = array(Image.open("../data/crans_1_small.jpg").convert("L"))
#im2= array(Image.open("../data/crans_2_small.jpg").convert("L"))
# Figure 2-2下面的图
im1 = array(Image.open("E:/Py_code/photo/7.jpg").convert("L"))
im2 = array(Image.open("E:/Py_code/photo/8.jpg").convert("L"))
# resize加快匹配速度
im1 = imresize(im1, (im1.shape[1]//2, im1.shape[0]//2))
im2 = imresize(im2, (im2.shape[1]//2, im2.shape[0]//2))
wid = 5
harrisim = harris.compute_harris_response(im1, 5)
filtered_coords1 = harris.get_harris_points(harrisim, wid+1)
d1 = harris.get_descriptors(im1, filtered_coords1, wid)
harrisim = harris.compute_harris_response(im2, 5)
filtered_coords2 = harris.get_harris_points(harrisim, wid+1)
d2 = harris.get_descriptors(im2, filtered_coords2, wid)
print('starting matching')
matches = harris.match_twosided(d1, d2)
figure()
gray()
harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()
实现结果:
在结果中,我们可以看到Harris角点对比的效果在这种图像角度发生变化的图像中不理想,很大的原因是因为Harris角点对比对于旋转角度拍摄的图像没有相应的功能去识别。Harris的算法效率也不高,这样的两张图片大小都在300k之下,程序需要跑出结果需要几分钟。
SIFT算法代码实现:
from PIL import Image
from pylab import *
import sys
from PCV.localdescriptors import sift
if len(sys.argv) >= 3:
im1f, im2f = sys.argv[1], sys.argv[2]
else:
# im1f = '../data/sf_view1.jpg'
# im2f = '../data/sf_view2.jpg'
im1f = 'E:/Py_code/photo/3.jpg'
im2f = 'E:/Py_code/photo/4.jpg'
# im1f = '../data/climbing_1_small.jpg'
# im2f = '../data/climbing_2_small.jpg'
im1 = array(Image.open(im1f))
im2 = array(Image.open(im2f))
sift.process_image(im1f, 'out_sift_1.txt')
l1, d1 = sift.read_features_from_file('out_sift_1.txt')
figure()
gray()
subplot(121)
sift.plot_features(im1, l1, circle=False)
sift.process_image(im2f, 'out_sift_2.txt')
l2, d2 = sift.read_features_from_file('out_sift_2.txt')
subplot(122)
sift.plot_features(im2, l2, circle=False)
#matches = sift.match(d1, d2)
matches = sift.match_twosided(d1, d2)
print ('{} matches'.format(len(matches.nonzero()[0])))
figure()
gray()
sift.plot_matches(im1, im2, l1, l2, matches, show_below=True)
show()
实现结果:
在上面的对比结果中可以看出,即使图像拍照的角度有很大的区别,SIFT依然可以有很好的对比匹配的效果,这就是SIFT能被称为过去十年来最成功的图像局部描述子的原因。相对Harris的效率相比,SIFT的效率有大的提升,程序的运行很快。
实现代码:
from pylab import *
from PIL import Image
from PCV.localdescriptors import sift
from PCV.tools import imtools
import pydot
""" This is the example graph illustration of matching images from Figure 2-10.
To download the images, see ch2_download_panoramio.py."""
#download_path = "panoimages" # set this to the path where you downloaded the panoramio images
#path = "/FULLPATH/panoimages/" # path to save thumbnails (pydot needs the full system path)
download_path = "E:/Py_code/photo/z" # set this to the path where you downloaded the panoramio images
path = "E:/Py_code/photo/z/" # path to save thumbnails (pydot needs the full system path)
# list of downloaded filenames
imlist = imtools.get_imlist(download_path)
nbr_images = len(imlist)
# extract features
featlist = [imname[:-3] + 'sift' for imname in imlist]
for i, imname in enumerate(imlist):
sift.process_image(imname, featlist[i])
matchscores = zeros((nbr_images, nbr_images))
for i in range(nbr_images):
for j in range(i, nbr_images): # only compute upper triangle
print('comparing ', imlist[i], imlist[j])
l1, d1 = sift.read_features_from_file(featlist[i])
l2, d2 = sift.read_features_from_file(featlist[j])
matches = sift.match_twosided(d1, d2)
nbr_matches = sum(matches > 0)
print('number of matches = ', nbr_matches)
matchscores[i, j] = nbr_matches
print("The match scores is: \n", matchscores)
# copy values
for i in range(nbr_images):
for j in range(i + 1, nbr_images): # no need to copy diagonal
matchscores[j, i] = matchscores[i, j]
threshold = 2 # min number of matches needed to create link
g = pydot.Dot(graph_type='graph') # don't want the default directed graph
for i in range(nbr_images):
for j in range(i + 1, nbr_images):
if matchscores[i, j] > threshold:
# first image in pair
im = Image.open(imlist[i])
im.thumbnail((100, 100))
filename = path + str(i) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(i), fontcolor='transparent', shape='rectangle', image=filename))
# second image in pair
im = Image.open(imlist[j])
im.thumbnail((100, 100))
filename = path + str(j) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(j), fontcolor='transparent', shape='rectangle', image=filename))
g.add_edge(pydot.Edge(str(i), str(j)))
g.write_png('E:/Py_code/photo/result/path.png')
实现结果:
图一是匹配地理标记图像的连线结果。关于连线这么紧密的问题,我认为是在大多数的图片中,都有拍摄到建筑的某个部分。单独的那两张图片,是我在中山纪念馆的正侧面拍摄,所以有许多相同特征。
在实验中,需要我们在原来配置好的环境中添加新模块。SIFT需要我们下载VLFeat,下载链接:VLFeat下载。建议下载vlfeat-0.9.20-bin.tar.gz
这个。因为我之前下载21的,出现问题。换到20就解决了。下载之后打开文件,打开bin文件,根据自己的windows的版本选择。我是64的,复制win64这个文件夹。粘贴到你项目的目录下。
之后在文件中找到sift.py
文件,将cmmd中改为如图所示。
这样在运行sift对比就不会有报错情况出现了。
在匹配地理标记图像时候,需要我们装pydot的模块。这个模块需要装GraphViz和pydot,GraphViz下载地址:GraphViz。我们下载后缀为.msi的文件,下载安装。在电脑的环境变换path中加入GraphViz目录下的bin文件路径。我在cmd中写入pip install pydot
代码中的import pydot
不报错了,但是出现了如图所示的错误。
我参考这位博主的文章解决“dot” not found in path报错。使用Anaconda的命令行,输入
conda install pydot-ng
conda install graphviz
就解决了问题。