一、Numpy介绍、为什么要用Numpy
1、Numpy介绍
Numpy
是Python的一个扩展包,语法和Matlab有很多相似之处。它支持高维数组和矩阵运算,也提供了许多数组和矩阵运算的函数。另外,它在数组和矩阵运算方面速度很快,效率很高。
2、为什么要用Numpy
Numpy向量化计算
与非向量化计算
性能比较
# coding: utf-8
import time
import numpy as np
# Numpy向量化测试
a = np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
c = np.dot(a,b)
toc = time.time()
print("计算结果"+str(c))
print("向量化使用时间:"+str(1000*(toc-tic)) + "ms")
# 使用for循环测试
c = 0
tic = time.time()
for i in range(1000000):
c += a[i] * b[i]
toc = time.time()
print("计算结果"+str(c))
print("循环使用时间:"+str(1000*(toc-tic)) + "ms")
#计算结果250011.92519533934
#向量化使用时间:0.9119510650634766ms
#计算结果250011.92519534056
#循环使用时间:466.2208557128906ms
复制代码
为什么向量化比循环快?
因为Numpy对向量计算做了优化,用到了CPU或GPU的并行计算,所以速度要比单纯的for循环要快。具体细节感兴趣可以自行研究。
二、数组创建
1、生成数组
(1)一维数组
import numpy as np
x = np.array([1.0,2.0,3.0])
print(x)
# [1. 2. 3.]
x = np.np.arange(0,5)
print(x)
# [0 1 2 3 4]
复制代码
各个元素与标量之间进行运算,称为广播。
(2)二维数组
A = np.array([[1,2],[3,4]])
A.shape
# 返回n*m的数组
A.dtype
# 返回数据类型
A.size
# 返回数组元素个数4
np.ndim(A)
#返回数组维数
复制代码
3、访问元素
for row in A:
print(row)
A[0]
A[0][1]
A.flatten() #将X转换为一维数组
# [1 2 3 4]
A[np.array([0,1])]#获取索引为1、2的元素
#[[1 2]
#[3 4]]
A > 15 #获得布尔型数组
#[[False False]
# [False False]]
复制代码
三、矩阵
1、创建矩阵
A = np.matrix('1,2;3,4')
print(A)
print(type((A)))
#[[1 2]
# [3 4]]
#
复制代码
2、数组转矩阵
A = np.array([[1,2],[3,4]])
#[[1 2]
# [3 4]]
B = np.mat(A)
print(B)
print(type(B))
#
复制代码
3、创建单位矩阵
E = np.eye(3)
#[[1. 0. 0.]
# [0. 1. 0.]
# [0. 0. 1.]]
复制代码
4、改变数组形状
# 将2*2的数组变形为4*1的数组
A = np.array([[1,2],[3,4]])
A = A.reshape((A.size,1))
print(A)
#[[1]
#[2]
#[3]
#[4]]
复制代码
四、计算
1、广播
为何叫广播,因为单个标量被广播、复制成n维数组。
如二维数组[[1,2],[3,4]]
与标量10相乘,等同于[[1,2],[3,4]]
乘以[[10,10],[10,10]]
。
2、矩阵转置
因为np.random.randn(5)
写法不直观,建议使用写法np.random.randn(5,1)
。
a = np.random.randn(5,1)
#转置
b = a.T
print(a)
#[[-0.30232915]
# [-0.13689176]
# [ 0.74737671]
# [ 0.58641912]
# [ 0.14419141]]
print(a.T)
#[[-0.30232915 -0.13689176 0.74737671 0.58641912 0.14419141]]
复制代码
3、矩阵乘法(点积)
(1)
import numpy as np
A = np.array([[1,2],[3,4]])
B = np.array([[5,6],[7,8]])
#点积
print(np.dot(A,B))
#array([[19, 22],[43, 50]])
复制代码
(2)
a = np.random.randn(5,1)
b = a.T
# (5,1)(1,5)的点积得到的是5*5的矩阵
print(np.dot(a,b))
# (1,5)(5,1)的点积得到的是1*1的矩阵
print(np.dot(b,a))
复制代码
4、矩阵求逆
,矩阵A与B互为逆矩阵
,其中E为单位矩阵,E的行列式计算
为1
A = np.matrix('1,2;3,4')
print(A.I)#求逆
#[[-2. 1. ]
# [ 1.5 -0.5]]
E = np.dot(A,A.I)
print(E)
#[[1.0000000e+00 0.0000000e+00]
#[8.8817842e-16 1.0000000e+00]]
value = np.linalg.det(E)#行列式计算
#0.9999999999999996
复制代码
4、算术运算
x = np.array([1.0,2.0,3.0])
y = np.array([2.0,3.0,4.0])
#减法
print(x - y)
# [-1. -1. -1.]
#加法
print(x + y)
#[3. 5. 7.]
#乘法
print(x * y)
#[ 2. 6. 12.]
#除法
print(x / y)
#[0.5 0.66666667 0.75 ]
#开方根
print(np.sqrt(x))
#[1. 1.41421356 1.73205081]
#对数
print(np.log(x))
#[0. 0.69314718 1.09861229]
# 指数
print(np.exp(a))
# [ 2.71828183 7.3890561 20.08553692]
复制代码
5、平均值、方差、标准差
x = np.array([1,2,3,4,5,6])
# 平均值
np.mean([1,2,3,4])
# 3.5
# 方差
print(np.var(x))
#2.9166666666666665
# 标准差
print(np.std(x))
#1.707825127659933
复制代码
五、应用
1、sigmoid函数
def sigmoid(x):
s = 1.0 / (1.0 + np.exp(-x))
return s
复制代码
2、sigmoid求导
def sigmoid_derivative(x):
s = sigmoid(x)
ds = s*(1-s)
return ds
复制代码
3、softmax函数计算
def softmax(x):
x_exp = np.exp(x)
x_sum = np.sum(np.exp(x),axis=1,keepdims = True)
s = x_exp / x_sum
return s
复制代码
4、计算损失函数
def L1(yhat, y):
loss = np.sum(np.abs(yhat - y))
return loss
复制代码
def L1(yhat, y):
loss = np.sum((y - yhat)**2)
return loss
复制代码
5、向量化练习
x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
### VECTORIZED DOT PRODUCT OF VECTORS ###
tic = time.process_time()
dot = np.dot(x1,x2)
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED OUTER PRODUCT ###
tic = time.process_time()
outer = np.outer(x1,x2)
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process_time()
mul = np.multiply(x1,x2)
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED GENERAL DOT PRODUCT ###
tic = time.process_time()
dot = np.dot(W,x1)
toc = time.process_time()
print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
复制代码
参考文档
Numpy 1.15.4官方文档
神经网络和深度学习-吴恩达——Vectorization
numpy基本方法总结