机器学习算法(一): 基于逻辑回归的分类预测

声明:本次撰写以Datawhale团队提供的学习材料以自学为主,代码为Datawhale团队提供,利用阿里云天池实验室与编辑器pycharm完成测试。
学习目标
*了解 逻辑回归的理论
*掌握逻辑回归的sklearn 函数调用使用并将其运用到鸢尾花数据集预测
代码流程:
Part1 Demo实践

  •  Step1:库函数导入
  •  Step2:模型训练 
  •  Step3:模型参数查看 
  •  Step4:数据和模型可视化 
  •  Step5:模型预测

Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践

  •  Step1:库函数导入 
  •  Step2:数据读取/载入 
  •  Step3:数据信息简单查看 
  •  Step4:可视化描述 
  •  Step5:利用 逻辑回归模型 在二分类上 进行训练和预测 
  •  Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

逻辑回归原理简介:
逻辑斯蒂回归是统计学中经典的分类方法,具体的内容可以参考李航老师编著的《统计学习方法》第二版与周志华老师所著《机器学习》即西瓜书,里面有着详细的介绍。
如图3.21所示。
image.png
其中用到的逻辑斯谛函数可用python代码如下表示:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))
plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

如图所示:
image.png

Part1 Demo实践

#!/usr/bin/env python 
# -*- coding:utf-8 -*-
##  基础函数库
import numpy as np

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression
##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
##查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)
##查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
##the weight of Logistic Regression:[[0.73462087 0.6947908]]
##the intercept(w0) of Logistic Regression:[-0.03643213]
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()
# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()
### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()
### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

出图:
image.png
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。
但是提供的代码也存在着一些小问题,比如说:

import seaborn as sns

虽然导入了seaborn库,但是程序中并没有用到。

3.2 基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包)(但实际的代码运行过程中并不需要numpy包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。
本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
image.png

##  基础函数库
import numpy as np
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris()  # 得到数据特征
iris_target = data.target  # 得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names)  # 利用Pandas转化为DataFrame格式
##利用.info()查看数据的整体信息
iris_features.info()
##
##RangeIndex:150entries,0to149
##Datacolumns(total4columns):
###ColumnNon-NullCountDtype
##----------------------------
##0sepallength(cm)150non-nullfloat64
##1sepalwidth(cm)150non-nullfloat64
##2petallength(cm)150non-nullfloat64
##3petalwidth(cm)150non-nullfloat64
##dtypes:float64(4)
##memoryusage:4.8KB
##进行简单的数据查看,我们可以利用.head()头部.tail()尾部
iris_features.head()
##其对应的类别标签为,其中0,1,2分别代表'setosa','versicolor','virginica'三种不同花的类别
iris_target
##array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
##0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
##0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
##1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
##1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,
##2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
##2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2])

##利用value_counts函数查看每个类别数量

pd.Series(iris_target).value_counts()

##2    50
##1    50
##0    50
##dtype:int64

##利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
##2    50
##1    50
##0    50
##dtype:int64
## 合并标签和特征信息
iris_all = iris_features.copy()  ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target

## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all, diag_kind='hist', hue='target')
plt.show()

for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,
                palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target'] == 0].values
iris_all_class1 = iris_all[iris_all['target'] == 1].values
iris_all_class2 = iris_all[iris_all['target'] == 2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:, 0], iris_all_class0[:, 1], iris_all_class0[:, 2], label='setosa')
ax.scatter(iris_all_class1[:, 0], iris_all_class1[:, 1], iris_all_class1[:, 2], label='versicolor')
ax.scatter(iris_all_class2[:, 0], iris_all_class2[:, 1], iris_all_class2[:, 2], label='virginica')
plt.legend()

plt.show()

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]
##测试集大小为20%,80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size=0.2,
                                                    random_state=2020)

##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression

##定义逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')
##在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
##查看其对应的w
print('the weight of Logistic Regression:', clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:', clf.intercept_)

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_train, train_predict))
print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_test, test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict, y_test)
print('The confusion matrix result:\n', confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

##The accuracy of the Logistic Regressionis:1.0
##The accuracy of the Logistic Regressionis:1.0
##The confusion matrix result:
##[[9  0]
##[0  11]]

##测试集大小为20%,80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size=0.2, random_state=2020)

##定义逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')
##在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
##在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
##查看其对应的w
print('the weight of Logistic Regression:\n', clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n', clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n', test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_train, train_predict))
print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_test, test_predict))
##查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict, y_test)
print('The confusion matrix result:\n', confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

##The confusion matrix result:
##[[10  0   0]
##[0   8   2]
##[0   2   8]]

出图:
image.png
我们可以发现其准确度为1,代表所有的样本都预测正确了。
[1] 周志华,机器学习
[1] 李航,统计学习方法(第二版)

你可能感兴趣的:(python,机器学习,编辑器,pycharm)