- 【猫狗分类】Pytorch VGG16 实现猫狗分类1-数据清洗+制作标签文件
努力的小巴掌
pytorch分类项目pytorch分类人工智能
Pytorch猫狗分类用Pytorch框架,实现分类问题,好像是学习了一些基础知识后的一个小项目阶段,通过这个分类问题,可以知道整个pytorch的工作流程是什么,会了一个分类,那就可以解决其他的分类问题,当然了,其实最重要的还是,了解她的核心是怎么工作的。那首先,我们的第一个项目,就做猫狗的分类。声明:整个数据和代码来自于b站,链接:使用pytorch框架手把手教你利用VGG16网络编写猫狗分类
- 论文笔记-Contrastive Learning for Unpaired Image-to-Image Translation
kingsleyluoxin
计算机视觉论文笔记深度学习python计算机视觉机器学习人工智能深度学习
论文信息标题:ContrastiveLearningforUnpairedImage-to-ImageTranslation作者:TaesungPark,AlexeiA.Efros,RichardZhang,Jun-YanZhu机构:UniversityofCalifornia,Berkeley;AdobeResearch代码链接https://github.com/taesungp/contra
- 论文笔记:Deep Algorithm Unrolling for Blind Image Deblurring
爱学习的小菜鸡
论文笔记去模糊图像处理神经网络
这是一篇CVPR2020的去模糊论文,主要是通过传统与深度相结合,将迭代次数变成神经网络的层数,使网络结构的网络结构更加具有解释性。主要贡献:DeepUnrollingforBlindImageDeblurring(DUBLID):提出一种可解释的神经网络结构叫做DUBLID,首先提出一种迭代算法,该算法被认为是梯度域中传统的广义全变分正则方法(generalizedTV-regularizeda
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化和模型压缩实现
踟蹰横渡口,彳亍上滩舟。
pytorch量化感知训练稀疏训练模型剪枝学习教程剪枝python深度学习
基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化实现支持:VGG、MobileNet、Resnet、ShuffleNet等模型。代码下载地址:下载BackBonePrunerPruneRatioOriginal/Pruned/FinetunedAccuracyFLOPs(M)Params(M)MobileV2L1-Norm0.60.937/0.100/0.84
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- 学习总结项目
苏小夕夕
学习人工智能深度学习机器学习
近段时间学习了机器学习、线性回归和softmax回归、多层感知机、卷积神经网络、Pytorch神经网络工具箱、Python数据处理工具箱、图像分类等的知识,学习了利用神经网络实现cifar10的操作、手写图像识别项目以及其对应的实验项目报告总结。项目总结本次项目我使用了VGG19模型、AlexNet模型和已使用的VGG16模型进行对比,在已有的条件下,对代码进行更改是,结果展示中,VGG19模型的
- [论文笔记] LLaMA3.1与Qwen2与Apple 技术报告中预训练方案对比
心心喵
论文笔记论文阅读深度学习人工智能
https://arxiv.org/pdf/2407.21075https://arxiv.org/pdf/2407.10671https://arxiv.org/pdf/2407.21783LLaMA3.1LLaMA3.1技术报告:https://ai.meta.com/blog/meta-llama-3-1/
- LLM时代的小模型思考:《What is the Role of Small Models in the LLM Era: A Survey》论文笔记
FrancisQiu
learningnlppaperreading论文阅读
论文:WhatistheRoleofSmallModelsintheLLMEra:ASurvey作者:LihuChenetal.单位:ImperialCollegeLondonAbstract问题:扩大模型大小会导致计算成本和能耗呈指数级增长,这使得这些模型对于学术研究人员和资源有限的企业来说不切实际小型模型(SMs)经常用于实际环境中,引发了关于小模型在LLM时代的作用的重要问题,且关注有限方法
- 快速掌握EasyOCR应用实战指南
梦想画家
#python人工智能pythonpytorchEasyOCR
EasyOCR是一个开源的、支持多语言(28+种)和多文档格式(PDF/PNG/JPG/TIFF等)的OCR(光学字符识别)工具库,由HuggingFace团队维护。其目标是简化OCR的开发流程,提供易用、高性能的文本识别能力,适用于工业、教育、医疗等多个领域。EasyOCR核心组件解析1.特征提取(FeatureExtraction)技术模型:ResNet(残差网络)、VGG功能:将输入图像转换
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- 基于tensorflow使用VGG16实现猫狗识别
Jakari
tensorflowpython
importtensorflowastfimportnumpyasnpfromtensorflow.kerasimportlayers,models,optimizersfromtensorflow.keras.preprocessing.imageimportImageDataGenerator#定义VGG16模型classVGG16(tf.keras.Model):def__init__(se
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- 图像识别-pytorch
星辰瑞云
机器学习cnnpytorch
Pytorch神经网络工具箱神经网络核心组件神经网络的基本组件层:包括卷积层、池化层、全连接层等。层是神经网络的基本结构,输入张量通过层后变为输出张量。模型:由层构成的网络结构,如AlexNet、VGG等。模型可以是预训练的,也可以自己搭建。损失函数:用于衡量预测值与真实值之间的差距,如均方误差。损失函数越小越好。优化器:用于调整权重和偏置,使损失函数最小化。优化器决定了参数的调整方式。误差反传(
- [论文笔记] LLM大模型剪枝篇——2、剪枝总体方案
心心喵
论文笔记剪枝算法机器学习
https://github.com/sramshetty/ShortGPT/tree/mainMy剪枝方案(暂定):剪枝目标:1.5B—>100~600M剪枝方法:层粒度剪枝1、基于BI分数选择P%的冗余层,P=60~802、对前N%冗余层,直接删除fulllayer。N=20(N:剪枝崩溃临界点,LLaMA2在45%,Mistral-7B在35%,Qwen在20%,Phi-2在25%)对后(P
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- 论文笔记(七十二)Reward Centering(一)
墨绿色的摆渡人
文章论文阅读
RewardCentering(一)文章概括摘要1奖励中心化理论文章概括引用:@article{naik2024reward,title={RewardCentering},author={Naik,AbhishekandWan,YiandTomar,MananandSutton,RichardS},journal={arXivpreprintarXiv:2405.09999},year={202
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- ResNet代码详解与具体实现
墨小傲
python人工智能神经网络深度学习
现在在搞一个项目,想将目前模型架构中的vgg换成resnet网络,所以写了这篇文章。代码都是官网的代码,只是对内容进行了解释。1.BasicBlock类中的init()函数是先定义网络架构,forward()的函数是前向传播,实现的功能就是残差块,importtorch.nnasnnimportmathimporttorch.utils.model_zooasmodel_zoo#这个文件内包括6中
- LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理深度学习笔记
Arxiv日期:2024.2.14机构:GoogleDeepMind/UniversityofToronto关键词长度泛化位置编码数据格式核心结论1.实验结论:十进制加法任务上的长度泛化最佳组合:FIRE位置编码随机化位置编码反向数据格式索引提示(indexhints,辅助定位)2.在适当的配置下,Transformer模型可以泛化到训练序列长度的2.5倍(例如从40位加法训练成功泛化到100位加
- 多模态论文笔记——DiT(Diffusion Transformer)
好评笔记
多模态论文笔记深度学习transformerDiT人工智能机器学习aigcstablediffusion
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Transformer架构图像生成方面的应用,将Diffusion和Transformer结合起来的模型:DiT。目前DiT已经成为了AIGC时代的新宠儿,视频和图像生成不可缺少的一部分。文章目录论文定义架构与传统(U-Net)扩散模型区别架构噪声调度策略与传统扩散的相同输入图像/条件信息的Patch化(Pat
- VGG 改进:加入GAMAttention注意力机制提升对全局信息捕捉能力
听风吹等浪起
AI改进系列深度学习cnn神经网络人工智能
目录1.GAMAttention注意力机制2.VGG加入GAMAttention模块3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.GAMAttention注意力机制GAMAttention(GlobalAttentionMechanism)是一种用于增强深度学习模型对全局信息捕捉能力的注意力机制。它通过引入全局上下文信息,帮助模型更好地理解输入数据
- Vgg 改进:添加EMA注意力机制高效提升跨空间学习
听风吹等浪起
AI改进系列学习人工智能计算机视觉深度学习
目录1.EMAAttention模块2.vgg改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.EMAAttention模块EMA(ExponentialMovingAverage,指数移动平均)注意力机制是一种结合了指数移动平均和注意力机制的模型,旨在通过引入时间序列的平滑特性来增强注意力机制的效果。它常用于处理序列数据(如自然语言处理、时间序列
- LLM论文笔记 14: The Impact of Positional Encoding on Length Generalization in Transformers
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2023.12.15机构:McGillUniversity/IBM/Facebook/ServiceNow关键词长度泛化位置编码CoT核心结论1.decoder-only中不显式使用位置编码(NoPE)可以提高长度泛化性能2.(证明了)decoder-onlytransformer如果NoPE同时具备绝对APE和RPE的能力3.暂存器(cot)对于长度泛化和任务相关,同时关注短期和
- 模型保存、训练与验证
钰见梵星
小土堆PyTorch深度学习深度学习人工智能
模型保存、训练与验证网络模型的保存与读取在PyTorch中,模型的保存与加载有两种主要方式:保存&加载完整模型(包括网络结构和参数)只保存&加载模型参数(推荐方式)可以直接跳过看最后几行。PyTorch提供torch.save()方法来保存模型,可以选择保存整个模型结构或只保存参数。保存整个模型importtorchfromtorchvisionimportmodels#加载VGG16模型(未使用
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,