- 深入解析Hadoop中的推测执行:原理、算法与策略
码字的字节
hadoop布道师hadoop算法推测执行
Hadoop推测执行概述在分布式计算环境中,任务执行速度的不均衡是一个普遍存在的挑战。Hadoop作为主流的大数据处理框架,通过引入推测执行(SpeculativeExecution)机制有效缓解了这一问题。该技术本质上是一种乐观的容错策略,当系统检测到某些任务执行明显落后于预期进度时,会自动在其它计算节点上启动相同任务的冗余副本,最终选择最先完成的任务结果作为输出。核心设计动机推测执行的诞生源于
- 阿里云态势感知和安骑士有什么区别?
阿腾云
阿里云态势感知和安骑士均是阿里云云盾安全产品,态势感知属于安全管理类的产品,安骑士数据服务器安全类产品,阿里云百科网来详细说下阿里云态势感知和安骑士之间的区别:态势感知和安骑士的区别简单来说,安骑士是检测云服务器漏洞的,态势感知提供安全类的大数据分析服务。态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案。安骑士
- 今日播报!庆衍书院郭庆旺被骗黑幕曝光,KSD2.0光伏市场不能出金不要再次踏入!
法律咨询维权
社交平台有这样一种群,群里都是“理财专家”“炒股大神”“操盘高手”,不仅每天免费授课、推荐牛股,还有助理“一对一”指导具体操作。针对网上素未谋面的牛散大咖,经济学家等推荐网上投资理财、数字经济,数字体育市场,人工智能项目,数字低碳,慈善投票网站买数字的等等都是骗局,广大市民对此要提高警惕,遇到此类情况一概不要相信。咨询顾问:182--71402640(电微同号)数字经济数字体育数字农业慈善投票大赛
- 大模型软件的多租户架构设计
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型软件的多租户架构设计关键词:大模型软件、多租户架构、设计、性能优化、安全性摘要:随着大数据和人工智能技术的迅猛发展,大模型软件在各个领域得到了广泛应用。然而,如何在大模型软件中实现高效的多租户架构设计,成为当前技术领域的一个关键挑战。本文将深入探讨大模型软件的多租户架构设计,包括其背景、核心概念、算法原理、系统架构、项目实战以及最佳实践等,旨在为开发者提供一套系统化、全面化的设计指南。设计过
- MobaXterm11.1:全面的Linux/Unix远程管理工具包
芥子纳须弥1116
本文还有配套的精品资源,点击获取简介:MobaXterm是为Windows用户设计的全能型Linux/Unix服务器远程管理工具,提供包括SSH客户端、多会话管理、FTP/SFTP客户端、X11转发、Telnet/Rlogin支持和端口转发在内的多种功能。它简化了远程登录和文件传输等任务,同时与SecureCRT相比,具有更直观的界面、更高的集成性和免费版本的优势。适用于系统运维、开发测试、教育科
- 【原创文集】如果时光会说话
7a82ff5fbe9b
大数据工程学院21计科本2王玉艳1528662159515286621595.如果时光会说话,它会不会知道未来发生的事情然后跟人类讲呢?从2006年的非典到2019年的新冠疫情,发生了太多太多的让人类遭遇苦难的病毒。如果时光会说话,它是否会将即将发生的事与我们一说,让人类避免所遭遇的一切呢?如果时光会说话,不知道它看见这些在它身体里所发生的一切,它会不会感到悲哀呢?如果时光会说话,我会问问它新冠疫
- 深入解析 Spark:关键问题与答案汇总
※尘
sqlhivespark
在大数据处理领域,Spark凭借其高效的计算能力和丰富的功能,成为了众多开发者和企业的首选框架。然而,在使用Spark的过程中,我们会遇到各种各样的问题,从性能优化到算子使用等。本文将围绕Spark的一些核心问题进行详细解答,帮助大家更好地理解和运用Spark。Spark性能优化策略Spark性能优化是提升作业执行效率的关键,主要可以从以下几个方面入手:首先,资源配置优化至关重要。合理设置Exec
- 大数据领域如何用好 Eureka 实现服务治理
大数据洞察
大数据eureka云原生ai
大数据领域Eureka服务治理实践:架构适配与最佳实践元数据框架标题大数据领域Eureka服务治理实践:架构适配、实现机制与最佳实践关键词Eureka;服务治理;大数据分布式系统;服务发现;负载均衡;故障恢复;云原生适配摘要Eureka作为Netflix开源的AP型服务发现组件,以其高可用性、动态适配性和轻量级特性,成为微服务架构的核心工具。然而,大数据领域的超大规模分布式、高并发数据流动、动态资
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- AI人才实在太抢手!顶级科学家年薪超7000万:中高级也能过千万
程序员 超超
人工智能transformer深度学习javaspringbootai大模型
快科技7月2日消息,据媒体报道,激烈的人工智能人才争夺战,导致一些顶尖资深研究科学家的年薪超过1000万美元(约7167万元人民币)。而典型的薪资方案则处于300万至700万美元区间,相较于2022年,这一数字实现了约50%的增长。薪酬追踪网站Levels的统计数据显示,Meta给予AI工程师的薪酬范围为18.6万至320万美元,OpenAI则在21.2万至250万美元之间;若以薪酬中位数来衡量,
- 新能源汽车大数据画像:从零到一实现K-means用户分群
新能源汽车研发&测试入门指南
学习笔记新星杯+王者杯汽车大数据kmeans
基于大数据分析的新能源汽车画像研究全攻略:从原理到实战前言在"软件定义汽车"的时代浪潮下,新能源汽车正经历着从交通工具向智能移动终端的进化。本文将带你深入探索如何通过大数据技术构建精准的用户与产品画像,揭秘车企数字化转型的核心技术。全文涵盖完整的技术链路和实战案例,助你快速掌握这一前沿领域。关键词:新能源汽车;用户画像挖掘;大数据分析;K-means聚类目录一、大数据分析技术基石二、新能源汽车画像
- Flink在物联网实时大数据处理中的最佳实践
大数据洞察
大数据AI应用大数据与AI人工智能flink物联网strutsai
Flink在物联网实时大数据处理中的最佳实践关键词:Flink、物联网、实时大数据处理、最佳实践、数据流摘要:本文围绕Flink在物联网实时大数据处理中的最佳实践展开。首先介绍了相关背景知识,接着深入浅出地解释了Flink、物联网和实时大数据处理的核心概念以及它们之间的关系。然后详细阐述了Flink处理物联网数据的核心算法原理、数学模型和公式。通过实际项目案例,展示了开发环境搭建、代码实现和解读。
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 量子生成对抗网络:量子计算与生成模型的融合革命
牧之112
量子计算生成对抗网络人工智能
引言:当生成对抗网络遇上量子计算在人工智能与量子计算双重浪潮的交汇处,量子生成对抗网络(QuantumGenerativeAdversarialNetworks,QGAN)正成为突破经典算力瓶颈的关键技术。传统生成对抗网络(GAN)在图像生成、数据增强等领域已取得辉煌成就,但其参数规模与计算复杂度随着数据维度呈指数级增长。量子计算的叠加性、纠缠性和并行性,为解决这一矛盾提供了全新思路。2025年,
- OpenAI模型可解释性工具:理解AI的黑箱
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能百度ai
OpenAI模型可解释性工具:理解AI的黑箱关键词:OpenAI模型、可解释性工具、AI黑箱、模型理解、人工智能摘要:本文旨在深入探讨OpenAI模型可解释性工具,帮助大家理解AI这个“黑箱”。首先介绍了研究的背景、目的和预期读者,接着解释了核心概念,包括OpenAI模型、可解释性工具等,阐述了它们之间的关系。通过核心算法原理、数学模型和公式的讲解,让大家明白其内在机制。还给出了项目实战案例,包括
- 骗局套路:卧虎藏隆应天书府隆国强被骗无法提现!讲述背后事实!
正义青天
为什么明明跟老师对过视频,确认是本人,怎么还会被骗了?你有没有想过一个名人大咖怎么会有时间给你们一对一视频,其次我来给大家揭露一下,这个套路AI换脸骗局是一种利用人工智能技术,通过替换视频中的人脸来伪造身份或进行诈骗的行为。你的账户“余额”是真的吗?为什么不能提现呢?其实都是骗子给你的一串数字而已!近期作者接触到了很多投资者被所谓的“隆国强”(骗子假冒)在卧虎藏隆应天书府带单的案例。这些新平台打着
- 信小易官网查询入口:信小易大数据信用检测平台!
无忧达人
信小易一个全能型的信用软件,信小易在一几年就上线的大数据信用平台,有着专业的大数据信用行业经验,从个人信用到企业信用,车辆大数据信小易全都有涉足,是一个非常完善的平台。信小易官网查询入口,对于想使用信小易的人来说,第一步我们需要找到信小易的查询入口,然后就可以进行大数据信用的查询服务了,可以查询自己的信用情况,查询结果也是非常准确。信小易查询入口放在文末了,划到文章结尾就可以看到查询入口信小易是一
- 7篇1章7节:机器学习算法解读,与数值预测回归模型构建
MD分析
用R探索医药数据科学机器学习算法回归r语言数据挖掘
机器学习是当今数据分析和人工智能的核心工具之一,其算法广泛应用于分类、回归、排序和推荐等领域。本篇将详细讲解机器学习的四大经典算法类型,并以回归问题为例深入探讨数值预测的关键步骤,包括数据准备、线性回归模型构建、模型预测及误差评估,帮助读者更系统地理解和掌握机器学习的基础知识及实际应用。一、机器学习的算法在数据科学和人工智能的浪潮中,机器学习算法成为了解决各种数据问题的关键工具。机器学习主要处理四
- 猫头虎推荐|用 AI 控制硬件设备的 MCP 工具:MCP2MQTT开源项目
猫头虎
猫头虎AI探索之路人工智能开源AIGCgptagipromptAI编程
猫头虎推荐|用AI控制硬件设备的MCP工具:MCP2MQTT开源项目MCP2MQTT是一款将物联网设备接入AI大模型的框架,它通过ModelContextProtocol(MCP)与MQTT协议的桥接,使得AI能够用自然语言实时感知并控制物理硬件。无论是机器人舵机控制,还是智能家居调光调色,你都可以借助MCP2MQTT快速原型、轻松上手。用自然语言控制硬件设备AI实时响应设备状态并调整物理参数让设
- ActiveMQ、RabbitMQ、RocketMQ、Kafka四种消息中间件分析介绍
马小屑
Kafkakafka
ActiveMQ、RabbitMQ、RocketMQ、Kafka四种消息中间件分析介绍我们从四种消息中间件的介绍到基本使用,以及高可用,消息重复性,消息丢失,消息顺序性能方面进行分析介绍!一、消息中间件的使用场景消息中间件的使用场景总结就是六个字:解耦、异步、削峰1.解耦如果我方系统A要与三方B系统进行数据对接,推送系统人员信息,通常我们会使用接口开发来进行。但是如果运维期间B系统进行了调整,或者
- 假冒振我中华第六届内部操盘群毛振华不正规!未来低碳项目不能提现难友真实经历告诉你!
法律咨询维权
随着互联网的普及和金融科技的发展,越来越多的人开始使用线上平台进行投资、交易等活动。然而,一些不法分子也利用这些平台实施诈骗行为,给投资者带来了巨大的损失。本文将介绍一种常见的骗局——黑平台无法出金,以帮助大家提高警惕性,避免上当受骗。推荐网上投资理财、数字经济、数字体育、人工智能,数字农业慈善投票网站买数字的等等都是,广大市民对此要提高警惕,遇到此类情况一概不要相信。(注明:该文章出现名字为网上
- 【学术会议投稿】Vue.js组件开发实战:从零构建高效可复用组件
小周不想卷
艾思科蓝学术会议投稿vue.js
【IEEE出版|会后3-4个月EI检索】第三届云计算、大数据应用与软件工程国际学术会议(CBASE2024)_艾思科蓝_学术一站式服务平台更多学术会议请看:https://ais.cn/u/nuyAF3目录引言一、Vue.js组件开发基础二、构建高效可复用组件三、Vue.js组件的高级特性四、Vue.js的优点与缺点Vue.js的优点Vue.js的缺点引言在现代前端开发中,Vue.js凭借其简洁的
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- 关于猫头虎,认识猫头虎,建联猫头虎,商务合作,产品评测,产品推广,个人自媒体创作,超级个体,涨粉秘籍,一起探索编程世界的无限可能!
猫头虎
猫头虎精品博客专栏CSDN开发云人机交互交互程序人生程序员创富创业创新学习方法
猫头虎建联猫头虎,商务合作,产品评测,产品推广,个人自媒体创作,超级个体,涨粉秘籍,一起探索编程世界的无限可能!猫头虎是谁?大家好,我是猫头虎,别名猫头虎博主,擅长的技术领域包括云原生、前端、后端、运维和AI。我的博客主要分享技术教程、bug解决思路、开发工具教程、前沿科技资讯、产品评测图文、产品使用体验图文、产品优点推广文稿、产品横测对比文稿,以及线下技术沙龙活动参会体验文稿。内容涵盖云服务产品
- Apache IoTDB 集群数据迁移指南
静默小音箱
编程问题解决手册apacheiotdb个人开发
随着物联网(IoT)设备的普及和数据量的激增,数据存储和管理的需求也随之增加。ApacheIoTDB作为一个专为时序数据设计的数据库系统,提供了从单机到集群的多种部署方案。最近,我将ApacheIoTDB从单机版本扩展到了集群版本,并遇到了一个有趣的问题:如何将一个集群的数据迁移到另一个集群?单机版本与集群版本的迁移对比在单机版本的ApacheIoTDB中,数据迁移非常简单。我们只需要将数据文件夹
- 时序数据库的工业级对决:对比 Apache IoTDB 和 InfluxDB
时序数据说
时序数据库apacheiotdb数据库大数据开源
在数字化浪潮中,物联网(IoT)与工业大数据领域蓬勃发展,时序数据呈爆发式增长。时序数据库作为管理这类数据的核心工具,其性能、功能和适应性直接影响到整个系统的运行效率与价值实现。ApacheIoTDB和InfluxDB作为时序数据库领域的佼佼者,被广泛应用于各类场景。深入剖析二者区别,对开发者、企业架构师和数据管理者而言,不仅能为项目选型提供科学依据,还能助力挖掘数据的最大价值。一、诞生背景与社区
- 时序数据库IoTDB与OpenTSDB的对比分析
时序数据说
时序数据库iotdbopentsdb数据库大数据
在物联网与大数据场景下,时序数据库的选择对于系统性能、数据存储与分析能力至关重要。本文将围绕ApacheIoTDB与OpenTSDB这两款开源时序数据库进行对比分析,从分布式架构、部署易用性、分析与计算能力、性能表现以及产品迭代与维护情况五个关键维度展开,旨在为面临海量设备接入和实时数据分析需求的物联网架构师提供客观的技术选型参考。一、分布式架构ApacheIoTDB:IoTDB原生支持分布式
- 生成式 AI:从 “理解” 到 “创造” 的突破
田园Coder
人工智能科普人工智能科普
1.生成式AI的定义:让AI从“识别”走向“创造”1.1什么是生成式AI生成式AI是一类能自主生成新内容(文本、图像、音频、视频等)的人工智能技术。与传统“判别式AI”(如人脸识别、垃圾邮件过滤,专注于分类和判断)不同,生成式AI的核心是“创造”——它能基于学习的规律,生成与训练数据相似但全新的内容。例如,判别式AI能判断“这是一幅梵高的画”,而生成式AI能模仿梵高的风格创作一幅全新的油画;判别式
- 青少年人工智能Python编程水平测试四级 模拟试卷9 试题解析
编程小伙伴测评网
YCL试题详解python开发语言少儿编程青少年编程算法数据结构排序算法
1、以下选项中,说法正确的是?()A、条件1and条件2,表示条件满足其中1个即可B、条件1or条件2,表示2个条件需要同时满足C、and和or不能在一个条件表达式中同时使用D、andor一般和if语句搭配使用正确答案:D试题解析:and是逻辑与,同时满足结果才满足;or是逻辑或,满足一个结果就是满足;
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,