- 深入解析:Tableau在数据可视化中的高级应用
Echo_Wish
实战高阶大数据信息可视化数据分析数据挖掘
深入解析:Tableau在数据可视化中的高级应用引言在大数据时代,数据可视化已成为数据分析中不可或缺的一部分。作为一款广受欢迎的数据可视化工具,Tableau以其强大的功能和灵活性,赢得了众多数据分析师的青睐。然而,许多人在使用Tableau时,仅停留在基本操作层面,未能充分发挥其潜力。本文将深入探讨Tableau的高级应用,展示其在复杂数据分析中的强大能力,并以具体实例说明其实际应用效果。数据预
- ECharts 柱状图X轴或Y轴空值无数据不占位不渲染不展示
大橙子-
echarts前端javascript
效果查看:将option复制到echarts解析垂直方向://垂直方向代码示例option={legend:{//这里data省略echarts会自动匹配,也可自行配置},xAxis:[//关键点:多个X轴进行匹配{type:'category',position:'bottom',data:['2021','']//空字符串则不会展示},{type:'category',position:'bo
- 如何在Echarts渲染完成后再执行其他代码(如何等待回调函数执行完成后再进行其他操作)
时代的狂
echartsjavascript
不知道如何描述,举个例子,echarts有finished事件,那么在setOption之后,如果渲染结束就会触发该事件,但是假如渲染时间很长,在setOption之后,我们有些紧随之后的代码需要在finished事件之后执行(实际上setOption之后的代码会立即执行,因为渲染并不会阻塞代码的执行),此时应该怎么做?如何知道finished事件被触发了?我希望有一个类似于其他语言线程waitt
- echarts 堆叠图 tooltip中各项指数如何实现'倒序展示'
echarts堆叠图tooltip的各项展示顺序与图上的展示顺序是不对称的,我截图了echarts官方网站的示例图,如下应产品需求,我需要把tooltip上展示的顺序与图上的顺序上下对称,也就是把默认的顺序进行倒序处理。百思不得其解,后来,终于找到了方法,感觉人生瞬间都有了希望!废话不多说,看方法。tooltip有一个钩子方法:position:(point,params,dom,rect,siz
- ECharts 实现同一个X轴多个Y轴分区展示不同值域数据
需求是展示11个指标数据的折线图,也就是11条折线,但是其实这是3组数据,值域的分布差别有点大,一组数据值域是0到0.1,一组数据的值域达到了10万,如果强行在同一个坐标系,导致数据趋势不能在图表上展示,于是,就有了显示的要求,要求三组数据分组显示,但是要在同一个X轴,也就是Y轴分组。我选择了EChart来实现。最终实现的思路是xAxis、yAxis和grid生成三组,xAxis和yAxis引用g
- 生态碳汇涡度相关监测与通量数据分析
岁月如歌,青春不败
生态遥感数据分析碳汇生态科学涡度通量大涡模拟MATLAB
1、以涡度通量塔的高频观测数据,基于MATLAB:2、涡度通量观测基本概况:观测技术方法、数据获取与预处理等3、涡度通量数据质量控制:通量数据异常值识别与剔除等4、涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等5、涡度通量数据组分拆分:计算生态系统呼吸和总初级生产力等6、涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等7、涡度通量与气象数据相关性:时间序列相关分析、回归分析等8、
- 22 FastAPI日志与监控
安迪小宝
FastAPIpythonfastapi
在现代应用开发中,日志记录和监控是确保系统健康和可维护性的重要组成部分。FastAPI提供了内置的日志功能,而Prometheus和Grafana则是常见的开源监控工具组合,广泛用于应用性能监控和可视化。本文将介绍如何配置FastAPI的日志记录,并结合Prometheus和Grafana进行应用监控和数据可视化。1.配置FastAPI的日志记录1.1使用Python内置的logging模块Fas
- 笔记:DataSphere Studio安装部署流程
右边com
Java大数据
一、标准版部署标准版:有一定的安装难度,体现在Hadoop、Hive和Spark版本不同时,可能需要重新编译,可能会出现包冲突问题。适合于试用和生产使用,2~3小时即可部署起来。支持的功能有:数据开发IDE-Scriptis工作流实时执行信号功能和邮件功能数据可视化-Visualis数据质量-Qualitis(单机版)工作流定时调度-Azkaban(单机版)Linkis管理台二、基础环境准备2.1
- QT 3D渲染技术详解
QT性能优化QT原理源码QT界面美化
qt3dqt6.3qt5c++QT教程
QT3D渲染技术详解使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT_3D渲染技术概述1.13D渲染技术简介1.1.13D渲染技术简介3D渲染技
- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- 开源echarts实现的BI数据可视化图表,总有你能用上的
2301_79125642
java
华为审批不通过天津企业待遇集锦211本硕985博找不到工作怎么办还在等华子车bu的保温呢,家被偷了【11.26更新】24届求职黑名单汇总贴记录一次被爆杀的字节面试经历25届日常实习求助,有开源项目经历和源码学习经历求求大家投下我们小米吧,被鸽麻了25日常实习点击就送的公司。。。二本鼠鼠2个多月秋招今天心酸结束秋招上岸,个人历程和面经总结理想一面美团成都到家-24届校招补招-不卷-急!!求求大家投下
- 跟我一起学Python数据处理(六十八):用图表让数据可视化
lilye66
信息可视化python开发语言pandas
跟我一起学Python数据处理(六十八):用图表让数据可视化大家好!在数据处理的学习道路上,我一直希望能和大家携手共进、共同成长。今天咱们继续深入学习Python数据处理中的重要内容——数据可视化。学会用合适的图表展示数据,不仅能让数据变得直观易懂,还能帮助我们发现数据背后隐藏的信息和规律。话不多说,咱们马上开始今天的学习之旅!一、不同图表的特点与应用场景在数据可视化的世界里,有各种各样的图表,每
- 跟我一起学Python数据处理(六十九):用Bokeh实现数据可视化及时间序列数据处理
lilye66
信息可视化python开发语言pandas
跟我一起学Python数据处理(六十九):用Bokeh实现数据可视化及时间序列数据处理大家好!一直以来,我都希望能和各位小伙伴在Python数据处理的学习道路上并肩前行,共同进步。今天,咱们继续深入探索数据处理中的数据可视化环节,重点学习Bokeh库的使用以及时间相关数据的处理与展示。掌握这些知识,能让我们更高效地挖掘数据价值,把数据背后的故事清晰地呈现出来。话不多说,开启今天的学习之旅吧!一、B
- 如何使用EchartS
前段技术人
echarts前端javascript
1.引入ECharts库你可以通过以下两种方式引入ECharts库:方法一:使用CDN在HTML文件的标签中添加以下代码:EChartsExample方法二:下载并本地引入你可以从ECharts官方网站下载ECharts的压缩包,解压后将echarts.min.js文件复制到你的项目目录中,然后在HTML文件中引入:EChartsExample2.创建DOM容器在HTML文件的标签中创建一个具有指
- 【数据可视化】数据可视化看板需求梳理模板(含示例)
L-ololois
数据可视化
一、模板设计一个数据可视化看板需要从多个方面梳理需求,以确保看板能够有效地传达信息并满足用户的需求。以下是一些关键方面:1.目标和受众●明确目标:确定看板的主要目的,例如监控业务指标、分析市场趋势、展示项目进度等。●了解受众:明确看板的受众是谁,例如管理层、业务团队、技术人员等,了解他们的需求和数据理解能力。2.数据需求●数据来源:确定数据的来源,包括数据库、API、文件等,并确保数据的可靠性和可
- 使用Elasticsearch和Kibana进行查询的语法和编程实践
一起去旅行Coding
elasticsearch大数据搜索引擎编程
Elasticsearch和Kibana是一对强大的组合,用于处理和可视化大规模数据集。Elasticsearch是一个分布式的搜索和分析引擎,而Kibana是一个用于数据可视化和分析的开源工具。在本文中,我们将详细介绍如何使用Elasticsearch和Kibana进行查询,并给出相应的源代码示例。连接到Elasticsearch在开始编写查询之前,我们首先需要连接到Elasticsearch。
- 学C++,赢好礼!写下你的学习笔记,成为技术分享达人!
CSDN资讯
c++学习笔记
自「侯捷C++系列课程」上线以来,已吸引了无数开发者的关注与参与,为激发学员的学习热情,增加知识点的理解与应用,同时增加课程的曝光度,特策划了侯捷C++系列课程学习笔记征文活动,并单独开设12节免费课时供大家观看学习。活动主页:https://activity.csdn.net/writing?id=10820侯捷C++系列课程观看地址:https://edu.csdn.net/cloud/hou
- 30.4:Python如何安装Pandas库? (课程共4100字)
小兔子平安
Python完整学习全解答pythonpandas开发语言
课程概述(课程共4100字)①安装Pandas库打开命令提示符或终端窗口,输入以下命令来安装Pandas:当安装完成后,可以使用以下命令来验证Pandas是否已正确安装:②数据处理和分析读写数据数据清洗和预处理数据分组和聚合数据可视化③Python学习的深入讨论Python的应用领域Python的优点和缺点学习Python的建议学习Python的挑战课程总结课程概述Python是一种功能强大的编程
- Py的Pandas:Python pandas库的详细介绍、安装和使用方法
追逐程序梦想者
pandaspython数据分析
Py的Pandas:Pythonpandas库的详细介绍、安装和使用方法Pandas是一个Python的数据处理库,它提供了快速、灵活、易用且高效的数据结构来进行数据操作。在数据挖掘、数据分析等领域中,Pandas被广泛应用。本文主要介绍Pandas的安装、基本数据结构、数据读写、数据统计以及数据可视化等方面。安装在命令行中使用pip工具安装Pandas:pipinstallpandas基本数据结
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- Python 爬虫实战:在东方财富网抓取股票行情数据,辅助投资决策
西攻城狮北
python爬虫实战案例东方财富网
目录一、引言二、准备工作1.环境搭建2.获取目标网址三、分析网页结构1.查看HTML结构2.分析请求方式四、编写爬虫代码1.导入必要的库2.设置请求头3.获取股票行情数据4.保存数据到CSV文件5.主函数五、数据分析与可视化1.加载数据2.数据清洗3.数据分析4.数据可视化六、总结一、引言在金融投资领域,股票行情数据是投资者做出决策的重要依据。东方财富网作为国内领先的金融信息平台,提供了丰富的股票
- 使用Seaborn绘制相关性热力图
认真写代码i
python开发语言Python
使用Seaborn绘制相关性热力图相关性热力图是一种常用的可视化工具,用于显示变量之间的相关性。在Python中,Seaborn是一个功能强大且易于使用的数据可视化库,可以轻松地创建相关性热力图。在本文中,我们将学习如何使用Seaborn的heatmap函数来绘制相关性热力图。首先,我们需要安装Seaborn库。你可以使用以下命令通过pip安装Seaborn:pipinstallseaborn安装
- Elasticsearch和Kibana的安装部署及服务器配置
TpCode
elasticsearch服务器大数据
Elasticsearch和Kibana是一对强大的工具,用于搜索、分析和可视化大规模数据集。Elasticsearch是一个开源的分布式搜索和分析引擎,而Kibana是一个用于数据可视化的开源工具。本文将详细介绍如何安装、部署和配置Elasticsearch和Kibana,并在服务器上运行它们。步骤1:安装JavaElasticsearch和Kibibana都需要Java来运行。确保您的服务器上
- AI驱动的知识发现:程序员的新机遇
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI驱动的知识发现:程序员的新机遇关键词:知识发现,AI驱动,数据挖掘,数据分析,算法优化,数据可视化,机器学习1.背景介绍1.1问题由来在当今信息化时代,数据量呈爆炸性增长,各行各业都面临着海量数据挖掘和知识发现的巨大挑战。传统的统计分析方法已难以满足需求,而人工智能(AI)技术的兴起为这一问题提供了新的解决方案。AI驱动的知识发现,即利用机器学习、深度学习等技术手段,从海量数据中自动提取有用信
- 《Python全栈开发:构建高并发物联网数据中台实战》
放氮气的蜗牛
深度博客python物联网开发语言
一、项目概述本文将基于Python生态构建一个完整的物联网数据中台系统,实现从设备接入到商业智能的全链路开发。系统采用微服务架构,核心功能包括:百万级设备并发接入(基于MQTT协议)实时流数据处理(ApacheKafka+Faust)时序数据存储(InfluxDB+Redis)智能告警引擎(规则引擎+机器学习)三维可视化大屏(PyWeb3D+ECharts)graphTDA[设备端]-->|MQT
- Python数据可视化工具库之lux使用详解
Rocky006
信息可视化数据分析数据挖掘
概要数据可视化在数据科学和分析中扮演着重要的角色。它可以更好地理解数据、发现模式、传达见解,并支持数据驱动的决策。PythonLux(简称Lux)是一个强大的数据可视化工具,它旨在简化数据可视化的过程,使数据探索更加容易和高效。本文将介绍Lux的基本概念、安装和配置、常见用例以及丰富的示例代码,帮助大家掌握这一有用的Python库。什么是PythonLux?PythonLux是一个Python库,
- 基于Python的医院运营数据可视化平台:设计、实现与应用(上)
Allen_LVyingbo
python医疗高效编程研发信息可视化python健康医疗
一、引言1.1研究目的与意义在信息技术日新月异的当下,医疗行业正处于深刻的变革之中,逐渐朝着信息化、智能化方向大步迈进。医院每天都会产生海量的数据,涵盖患者信息、诊疗记录、药品库存、设备使用状况等多个关键领域。这些数据宛如一座蕴藏丰富的宝藏,若能加以科学有效的管理与分析,将为医院的运营管理提供强大的支持,成为提升医疗服务质量、优化资源配置的关键要素。然而,传统的数据处理方式,如过度依赖Excel表
- 如何学BI大数据
想做富婆
大数据相关大数据BI大数据
职业规划建议1.短期目标(1-2年)积累经验:通过实习或初级岗位(如数据分析师、商业分析师)积累经验。提升技能:深入学习SQL、Python、BI工具,掌握数据分析和可视化技能。建立作品集:完成个人项目或参与开源项目,展示数据分析能力。2.中期目标(3-5年)专业化发展:根据兴趣选择细分方向,如数据可视化、BI开发或数据运营。提升软技能:加强沟通、项目管理能力,提升商业敏感度。行业深耕:选择感兴趣
- 智能指针与内存管理的深入理解与实践经验
爱编程的Loren
活动文章活动文章
一、引言 在C++编程语言中,内存管理是一个至关重要的环节。侯捷老师的C++系列课程深入浅出地讲解了智能指针与内存管理的重要性,本文旨在分享对此知识点的深入理解和学习心得。 二、智能指针概述 智能指针是C++中用于自动管理内存的一种工具,它可以自动删除所指向的对象,从而避免内存泄漏等问题。智能指针的引入大大简化了C++程序员的内存管理任务。 三、常见智能指针详解 1.`std::un
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><