- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- C++ OpenCV4 实现鱼眼镜头矫正
朝风工作室
c++开发语言
一、为什么需要鱼眼镜头矫正?鱼眼镜头通过特殊的光学设计实现180°甚至更广的视野,广泛应用于全景相机、自动驾驶、安防监控等领域。但这种广角特性会引入严重的桶形畸变:直线边缘会向内弯曲(如图像边缘的门框变成弧线),物体尺寸在边缘区域会被拉伸。矫正的核心目标:将鱼眼镜头拍摄的畸变图像还原为接近人眼视觉的正常图像,便于后续的目标检测、图像拼接等处理。矫正前后效果对比(此处可插入图片)矫正前图像(鱼眼畸变
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化
计算机C9硕士_算法工程师
深度学习目标检测YOLO
深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化文章目录1.环境设置2.数据准备3.模型训练4.推理与结果可视化推理代码示例5.构建可视化界面PyQt5GUI代码示例总结以下文字及代码仅供参考。树冠检测数据集的训练及推理1使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化等方面进行详细介绍。1.环境设置首先确保
- 学习昇腾开发的第8天
派晟电子工作室
学习昇腾
1、目标检测样例:MindXSDK应用开发入门-Atlas200IDKA2开发者套件23.0.RC3-昇腾社区配置环境变量。:./usr/local/Ascend/mxVision/set_env.sh2、修改IP地址:以root用户名登录开发者套件。打开配置文件。Ubuntu操作系统:执行cd/etc/netplan命令进入“netplan”目录,执行ll命令查看目录下是否有类似“xxxx-ne
- DFT ATPG中core chain 和wrap chain区别
芯作者
DFT技术分享智能硬件硬件工程
在DFT(可测试性设计)中,CoreChain(核心扫描链)和WrapChain(封装扫描链)是两种不同的扫描链结构,分别服务于内部逻辑测试(Intest)和互连测试(Extest)。它们的核心区别如下:一、本质区别特性CoreChain(核心扫描链)WrapChain(封装扫描链)作用对象芯片内部逻辑单元(如寄存器、组合逻辑)芯片I/O端口(输入/输出引脚)测试目标检测内部故障(Stuck-At
- Python 人工智能Ai视觉模型 YOLOv8
GHY云端大师
pythonAI大模型视觉训练人工智能YOLO
YOLOv8简介:Python中的高效AI视觉模型YOLOv8是Ultralytics公司开发的最新目标检测模型,属于YOLO(YouOnlyLookOnce)系列的最新版本,以其高效和准确著称。核心特点高性能:在速度和精度之间取得了更好的平衡多功能:支持目标检测、实例分割和图像分类用户友好:简化了API设计,更易于使用可扩展性:支持从移动端到云端的多种部署场景主要改进更高的检测精度更快的推理速度
- AI人工智能目标检测在体育赛事中的应用
AI大模型应用之禅
人工智能目标检测计算机视觉ai
AI人工智能目标检测在体育赛事中的应用关键词:目标检测、计算机视觉、深度学习、体育分析、YOLO、运动员追踪、比赛统计摘要:本文深入探讨了AI目标检测技术在体育赛事中的创新应用。我们将从计算机视觉基础出发,详细分析目标检测的核心算法原理,特别是YOLO系列模型在运动员和球类追踪中的实现方式。文章包含完整的数学模型解释、Python实战项目演示,以及在实际体育场景中的应用案例分析。最后,我们展望了这
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 深度解析YOLOv8:CSPHet卷积结构如何实现极致轻量化
向哆哆
YOLO创新涨点系列YOLOyolov8架构目标检测机器学习
文章目录一、背景介绍1.1YOLOv8的现状1.2降参数的必要性二、相关技术介绍2.1Dual思想2.2HetConv三、CSPHet结构设计3.1CSP模块的改进3.2结合HetConv3.3参数量的下降四、CSPHet的代码实现五、实验结果六、总结与展望在目标检测领域,YOLO系列算法一直以其卓越的速度和准确率受到广泛关注。随着深度学习技术的不断发展,研究人员不断探索如何进一步优化YOLO算法
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- 目标检测——YOLOX算法解读
论文:YOLOX:ExceedingYOLOSeriesin2021(2021.7.18)作者:ZhengGe,SongtaoLiu,FengWang,ZemingLi,JianSun链接:https://arxiv.org/abs/2107.08430代码:https://github.com/Megvii-BaseDetection/YOLOXYOLO系列算法解读:YOLOv1通俗易懂版解读、
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- (二十一)YOLO 全解析:从实时目标检测到多任务视觉智能
只有左边一个小酒窝
深度学习YOLO目标检测人工智能深度学习计算机视觉
1YOLO的发展脉络与技术定位1.1发展脉络YOLOv1(2015年):将目标检测重新定义为单一回归问题,把输入图像划分为S×S网格,每个网格单元负责预测固定数量的边界框及对应的类别概率,直接从像素回归预测物体的边界框坐标和类别概率。但存在小目标检测能力弱、定位精度不足等局限。YOLOv2(2016年):引入批量归一化、锚框、维度集群等技术,还提出了高分辨率分类器、直接位置预测、细粒度特征融合、多
- 使用预训练权重在YOLO模型上训练新数据集的完整指南
马里马里奥-
YOLO目标跟踪人工智能
使用预训练权重在YOLO模型上训练新数据集的完整指南引言在目标检测领域,迁移学习已成为提升模型性能的关键技术。本文将详细介绍如何利用预训练权重在YOLO(YouOnlyLookOnce)框架上训练自定义数据集,帮助您节省训练时间并提高检测精度。为什么使用预训练权重?加速收敛:预训练模型已学习通用特征,训练时间可缩短30%−70%30\%-70\%30%−70%小样本适配:在数据量有限时(n<100
- Python与C++检测框过滤差异分析
马里马里奥-
pythonc++开发语言人工智能
Python与C++检测框过滤差异分析在目标检测任务中,检测框过滤是后处理的关键环节。本文将从实现方式、性能表现和适用场景三个维度,对比分析Python与C++在检测框过滤中的差异。检测框过滤基本原理检测框过滤的核心是非极大值抑制(NMS)算法,其数学表达式为:NMS(B,S,θ)={bi∣∀bj,area(bi∩bj)area(bi∪bj)0:i=order[0]keep.append(i)xx
- YOLO理论知识简单了解
老农民编程
视觉与YoLo模型认知YOLO
目录前言一、YOLO是什么?以及核心思想?1、目标检测的本质与分类2、YOLO核心思想二、为什么使用YOLO,优势是什么?三、怎么使用YOLO模型?总结前言对YOLO模型的简单理解,对其进行记录。一、YOLO是什么?以及核心思想?YOLO(YouOnlyLookOnce)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。1、目标检测的本质与分类1.目标检测本质:目标在哪里:检
- 甜菜杂草目标检测数据集(猫脸码客第278期)
公众号:猫脸码客
开源数据集猫脸码客开源数据集甜菜杂草目标检测数据集
甜菜杂草检测一、甜菜田杂草种类甜菜田中常见多种杂草,以下为你详细介绍几种典型杂草:稗草植物属性:一年生草本植物,外形与稻子极为相似。形态特征:秆直立,表面光滑无毛。圆锥花序主轴带有角棱,质地粗糙;小穗密集生长在穗轴的一侧,几乎无柄或仅有极短柄。生长习性:花果期在7-10月,常生长于稻田、沼泽、沟渠旁以及低洼荒地等区域。狗尾草别称:又叫莠,因其穗形酷似狗尾巴而得名。形态特征:秆疏丛生,直立或者基部膝
- YOLOv12:以注意力为中心的物体检测
发呆小天才O.o
计算机视觉深度学习计算机视觉目标检测YOLOv12
1.概述实时目标检测已成为许多实际应用的关键,而Ultralytics的YOLO(YouOnlyLookOnce)系列一直是最先进的模型系列,在速度和准确率之间实现了稳健的平衡。注意力机制的低效性阻碍了其在YOLO等高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。由于注意力机制效率低下,且计算复杂度高达平方级,内存访问操作效率低下,因此大多数目标检测架构传统
- 计算机视觉入门:OpenCV 人脸识别与手势控制系统全解析
高山仰星
计算机视觉opencv人工智能
1.引言计算机视觉(ComputerVision)是人工智能的重要领域,而OpenCV(OpenSourceComputerVisionLibrary)是最常用的开源计算机视觉库。它广泛用于图像处理、人脸识别、目标检测、手势识别等多个应用场景。本教程将详细介绍OpenCV的核心概念,并通过人脸识别的门禁系统和手势识别的智能控制系统这两个案例,帮助你掌握OpenCV的实际应用。2.OpenCV介绍与
- 基于YOLOv11的实时人脸表情识别系统(附完整资源 + PyQt5界面 + 训练代码)
霜天红叶
YOLOpythonpycharm人工智能算法cnn
引言在人机交互和情感计算领域,人脸表情识别一直是一个备受关注的研究方向。随着深度学习技术的快速发展,特别是目标检测和图像分类算法的进步,实时、高精度的人脸表情识别系统已经成为可能。本文将详细介绍一个基于YOLOv11的人脸表情识别系统,该系统不仅能够实现实时人脸检测,还能准确识别多种表情状态,具有广泛的应用前景。GitHub地址项目地址:https://github.com/AND-Q/Facia
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 声波下的眼睛:用Python打造水下目标检测模型实战指南
Echo_Wish
Python算法Python笔记从零开始学Python人工智能python目标检测开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文主要利用MSA2NetMSA^{2}NetMSA2Net中的MASAG模块优化YOLOv10的目标检测网络模型。MASAG(Multi-ScaleAdaptiveSpatialAttentionGate)模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于YOLOv10的改进过程中,针对目标
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- 基于腾讯云GPU服务器的深度学习训练技术指南
小猴崽
解决方案GPU深度学习深度学习gpu算力解决方案
摘要本文针对深度学习训练场景,系统解析技术核心价值与实施路径,结合腾讯云GPU服务器产品特性,提供从环境搭建到性能优化的完整解决方案。通过对比实验验证,采用腾讯云方案可使训练效率提升180%,成本降低40%(数据来源:IDC2024中国AI基础设施白皮书)。一、技术解析核心价值深度学习训练通过多层神经网络自动提取数据特征,广泛应用于计算机视觉(如YOLOv5目标检测)、自然语言处理(Transfo
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。