哈工大LTP部署及测试Demo

 
  
 
  
#coding: utf-8
import os
from pyltp import SentenceSplitter
from pyltp import Segmentor
from pyltp import Postagger
from pyltp import NamedEntityRecognizer
from pyltp import Parser
from pyltp import SementicRoleLabeller
import re
# import processHandler
import pyltpT

#pyltp官方文档http://pyltp.readthedocs.io/zh_CN/develop/api.html#id15
#http://blog.csdn.net/MebiuW/article/details/52496920
#http://blog.csdn.net/lalalawxt/article/details/55804384

LTP_DATA_DIR = 'E:\BaiduNetdiskDownload\ltp_data_v3.4.0'  # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model')  # 词性标注模型路径,模型名称为`pos.model`
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model')  # 命名实体识别模型路径,模型名称为`pos.model`
par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model')  # 依存句法分析模型路径,模型名称为`parser.model`
srl_model_path = os.path.join(LTP_DATA_DIR, 'pisrl.model')  # 语义角色标注模型目录路径,
print("======================>>>>"+srl_model_path)

def main():
    #sentence_splitter()
    words = segmentor('我家在中科院,我现在在北京上学。中秋节你是否会想到李白?')
    # print(words)
    tags = posttagger(words)
    netags=ner(words,tags)
    arcs = parse(words,tags)
    roles = role_label(words, tags, netags, arcs)
    print(roles)



# 分句,也就是将一片文本分割为独立的句子
def sentence_splitter(sentence='你好,你觉得这个例子从哪里来的?当然还是直接复制官方文档,然后改了下这里得到的。我的微博是MebiuW,转载请注明来自MebiuW'):
    sents = SentenceSplitter.split(sentence)  # 分句
    print('\n'.join(sents))


"""分词"""
def segmentor(sentence=None):
    segmentor = Segmentor()  # 初始化实例
    segmentor.load(cws_model_path)  # 加载模型
    words = segmentor.segment(sentence)  # 分词
    #默认可以这样输出
    print ('\t'.join(words))
    # 可以转换成List 输出
    words_list = list(words)
    segmentor.release()  # 释放模型
    return words_list


"""词性标注"""
def posttagger(words):
    #LTP_DATA_DIR = 'E:\BaiduNetdiskDownload\ltp_data_v3.4.0'  # ltp模型目录的路径

    postagger = Postagger() # 初始化实例
    postagger.load(pos_model_path)  # 加载模型
    postags = postagger.postag(words)  # 词性标注
    for word,tag in zip(words,postags):
        print(word+'/'+tag)
    postagger.release()  # 释放模型
    return postags


"""命名实体识别"""
def ner(words,postags):
    print('命名实体开始')
    recognizer = NamedEntityRecognizer()
    recognizer.load(ner_model_path) #加载模型
    netags = recognizer.recognize(words,postags) #命名实体识别
    for word,ntag in zip(words,netags):
        print(word+'/'+ ntag)
    recognizer.release()   #释放模型
    nerttags = list(netags)
    return nerttags

"""依法"""
def parse(words, postags):
    parser = Parser() # 初始化实例
    parser.load(par_model_path)  # 加载模型
    arcs = parser.parse(words, postags)  # 句法分析
    print("\t".join("%d:%s" % (arc.head, arc.relation) for arc in arcs))
    parser.release()  # 释放模型
    return arcs


def role_label(words, postags, netags, arcs):
    labeller = SementicRoleLabeller() # 初始化实例
    labeller.load(srl_model_path)  # 加载模型
    roles = labeller.label(words, postags, netags, arcs)  # 语义角色标注
    for role in roles:
        print(role.index+"".join(
            ["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))
    labeller.release()  # 释放模型
    return roles

def testss():
    sentence="600251后市怎样操作?谢谢。"
    hagongdaLTP=pyltpT.PyltpT()
    hagongdalist = hagongdaLTP.ltpmain(sentence)
    sentence1="$精华制药(sz003买入,短线还有机会吗?压力位多少,大概什么价位卖掉合适?谢谢。"
    hagongdaLTP1 = pyltpT.PyltpT()
    hagongdalist2 = hagongdaLTP1.ltpmain(sentence1)
    print(hagongdalist)
    for item in hagongdalist2:
        if 'sh' or 'sz' in item:
            hagongdalist2[hagongdalist2.index(item)]=item[2:8]
        item = re.sub("[\s+\.\!\/_,\[\]$\-:);%=^*(+\"\']+|[+——\“\”?。?<《》>~@#%……&*()]+", '', item)
        if len(item)==1:
            hagongdalist2.remove(item)
    print(hagongdalist2)








def hagongda2(sentence):
    LTP_DATA_DIR = 'E:\BaiduNetdiskDownload\ltp_data_v3.4.0'  # ltp模型目录的路径
    cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`
    cidian_path = os.path.join(LTP_DATA_DIR, 'cidian.txt')
    print(cidian_path)
    segmentor = Segmentor()  # 初始化实例
    segmentor.load_with_lexicon(cws_model_path, cidian_path)  # 加载模型
    sentence = ''.join(sentence.split())
    sentence = re.sub("[\s+\.\!\/_,\[\]$\-:);%=^*(+\"\']+|[+——\“\”?。?<《》>~@#%……&*()]+", '', sentence)
    words = segmentor.segment(sentence)
    #print(' '.join(words))
    words_list = list(words)
    segmentor.release()
    return words_list


def test2():
    LTP_DATA_DIR = 'E:\BaiduNetdiskDownload\ltp_data_v3.4.0'  # ltp模型目录的路径
    cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`
    pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model')  # 词性标注模型路径,模型名称为`pos.model`
    ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model')  # 命名实体识别模型路径,模型名称为`pos.model`
    par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model')  # 依存句法分析模型路径,模型名称为`parser.model`
    srl_model_path = os.path.join(LTP_DATA_DIR, 'srl')  # 语义角色标注模型目录路径,

    segmentor = Segmentor()
    segmentor.load(cws_model_path)
    words = segmentor.segment('亚硝酸盐是一种化学物质')
    print(' '.join(words))
    segmentor.release()


def test():
    project_path = "E:\\BaiduNetdiskDownload\\ltp_data_v3.4.0"  # 项目文件夹目录
    # 可设置ltp_test、(cwsposparner_cmdline,但是注意各自能用的参数,没有的参数请置空""
    model_exe = "cws_cmdline"  # 又如cws_cmdline

    threads_num = " --threads " + str(3)  # 更改线程数
    #last_stage = " --last-stage " + "all"  # 最终步骤,可设置wsposnerdpsrlall
    input_path = " --input " + "E:\\BaiduNetdiskDownload\\ltp_data_v3.4.0\\file\\test.txt"  # 输入文件
    seg_lexicon = ""  # 分词用户词典
    pos_lexicon = ""  # 词性标注用户词典
    output_path = "E:\\LTP-project\\file\\out.txt"  # 输出文件

    command = "cd " + project_path + " & " + model_exe + threads_num + input_path + " > " + output_path
    os.system(command)

if __name__ == '__main__':
    main()

你可能感兴趣的:(python技能)