平衡二叉树【代码实现】

C


{
	struct node *n = calloc(1, sizeof *n);
	*n = (struct node) { value, 1, {nnil, nnil} };
	return n;
}
 
int max(int a, int b) { return a > b ? a : b; }
inline void set_height(struct node *n) {
	n->height = 1 + max(n->kid[0]->height, n->kid[1]->height);
}
 
inline int ballance(struct node *n) {
	return n->kid[0]->height - n->kid[1]->height;
}
 
// rotate a subtree according to dir; if new root is nil, old root is freed
struct node * rotate(struct node **rootp, int dir)
{
	struct node *old_r = *rootp, *new_r = old_r->kid[dir];
 
	if (nnil == (*rootp = new_r))
		free(old_r);
	else {
		old_r->kid[dir] = new_r->kid[!dir];
		set_height(old_r);
		new_r->kid[!dir] = old_r;
	}
	return new_r;
}
 
void adjust_balance(struct node **rootp)
{
	struct node *root = *rootp;
	int b = ballance(root)/2;
	if (b) {
		int dir = (1 - b)/2;
		if (ballance(root->kid[dir]) == -b)
			rotate(&root->kid[dir], !dir);
		root = rotate(rootp, dir);
	}
	if (root != nnil) set_height(root);
}
 
// find the node that contains value as payload; or returns 0
struct node *query(struct node *root, int value)
{
	return root == nnil
		? 0
		: root->payload == value
			? root
			: query(root->kid[value > root->payload], value);
}
 
void insert(struct node **rootp, int value)
{
	struct node *root = *rootp;
 
	if (root == nnil)
		*rootp = new_node(value);
	else if (value != root->payload) { // don't allow dup keys
		insert(&root->kid[value > root->payload], value);
		adjust_balance(rootp);
	}
}
 
void delete(struct node **rootp, int value)
{
	struct node *root = *rootp;
	if (root == nnil) return; // not found
 
	// if this is the node we want, rotate until off the tree
	if (root->payload == value)
		if (nnil == (root = rotate(rootp, ballance(root) < 0)))
			return;
 
	delete(&root->kid[value > root->payload], value);
	adjust_balance(rootp);
}
 
// aux display and verification routines, helpful but not essential
struct trunk {
	struct trunk *prev;
	char * str;
};
 
void show_trunks(struct trunk *p)
{
	if (!p) return;
	show_trunks(p->prev);
	printf("%s", p->str);
}
 
// this is very haphazzard
void show_tree(struct node *root, struct trunk *prev, int is_left)
{
	if (root == nnil) return;
 
	struct trunk this_disp = { prev, "    " };
	char *prev_str = this_disp.str;
	show_tree(root->kid[0], &this_disp, 1);
 
	if (!prev)
		this_disp.str = "---";
	else if (is_left) {
		this_disp.str = ".--";
		prev_str = "   |";
	} else {
		this_disp.str = "`--";
		prev->str = prev_str;
	}
 
	show_trunks(&this_disp);
	printf("%d\n", root->payload);
 
	if (prev) prev->str = prev_str;
	this_disp.str = "   |";
 
	show_tree(root->kid[1], &this_disp, 0);
	if (!prev) puts("");
}
 
int verify(struct node *p)
{
	if (p == nnil) return 1;
 
	int h0 = p->kid[0]->height, h1 = p->kid[1]->height;
	int b = h0 - h1;
 
	if (p->height != 1 + max(h0, h1) || b < -1 || b > 1) {
		printf("node %d bad, balance %d\n", p->payload, b);
		show_tree(p, 0, 0);
		abort();
	}
	return verify(p->kid[0]) && verify(p->kid[1]);
}
 
#define MAX_VAL 32
int main(void)
{
	int x;
	struct node *root = nnil;
 
	srand(time(0));
 
	for (x = 0; x < 10 * MAX_VAL; x++) {
		// random insertion and deletion
		if (rand()&1)	insert(&root, rand()%MAX_VAL);
		else		delete(&root, rand()%MAX_VAL);
 
		verify(root);
	}
 
	puts("Tree is:");
	show_tree(root, 0, 0);
 
	puts("\nQuerying values:");
	for (x = 0; x < MAX_VAL; x++) {
		struct node *p = query(root, x);
		if (p)	printf("%2d found: %p %d\n", x, p, p->payload);
	}
 
	for (x = 0; x < MAX_VAL; x++) {
		delete(&root, x);
		verify(root);
	}
 
	puts("\nAfter deleting all values, tree is:");
	show_tree(root, 0, 0);
 
	return 0;
}

输出:

Tree is:
            .--0
        .--2
       |    `--4
       |        `--5
    .--6
   |   |    .--10
   |    `--12
   |       |    .--13
   |        `--15
---17
   |            .--18
   |        .--19
   |    .--21
   |   |   |    .--24
   |   |    `--25
    `--26
        `--27
            `--30


Querying values:
 0 found: 0x180a210 0
 2 found: 0x180a1b0 2
 4 found: 0x180a010 4
 5 found: 0x180a0d0 5
 6 found: 0x180a0f0 6
10 found: 0x180a190 10
12 found: 0x180a150 12
13 found: 0x180a250 13
15 found: 0x180a050 15
17 found: 0x180a270 17
18 found: 0x180a1d0 18
19 found: 0x180a170 19
21 found: 0x180a070 21
24 found: 0x180a030 24
25 found: 0x180a0b0 25
26 found: 0x180a130 26
27 found: 0x180a1f0 27
30 found: 0x180a110 30

After deleting all values, tree is:

C++

#include 
#include 
/* AVL node */
template <class T>
class AVLnode {
public:
    T key;
    int balance;
    AVLnode *left, *right, *parent;
 
    AVLnode(T k, AVLnode *p) : key(k), balance(0), parent(p),
                        left(NULL), right(NULL) {}
 
    ~AVLnode() {
        delete left;
        delete right;
    }
};
 
/* AVL tree */
template <class T>
class AVLtree {
public:
    AVLtree(void);
    ~AVLtree(void);
    bool insert(T key);
    void deleteKey(const T key);
    void printBalance();
 
private:
    AVLnode<T> *root;
 
    AVLnode<T>* rotateLeft          ( AVLnode<T> *a );
    AVLnode<T>* rotateRight         ( AVLnode<T> *a );
    AVLnode<T>* rotateLeftThenRight ( AVLnode<T> *n );
    AVLnode<T>* rotateRightThenLeft ( AVLnode<T> *n );
    void rebalance                  ( AVLnode<T> *n );
    int height                      ( AVLnode<T> *n );
    void setBalance                 ( AVLnode<T> *n );
    void printBalance               ( AVLnode<T> *n );
    void clearNode                  ( AVLnode<T> *n );
};
 
/* AVL class definition */
template <class T>
void AVLtree<T>::rebalance(AVLnode<T> *n) {
    setBalance(n);
 
    if (n->balance == -2) {
        if (height(n->left->left) >= height(n->left->right))
            n = rotateRight(n);
        else
            n = rotateLeftThenRight(n);
    }
    else if (n->balance == 2) {
        if (height(n->right->right) >= height(n->right->left))
            n = rotateLeft(n);
        else
            n = rotateRightThenLeft(n);
    }
 
    if (n->parent != NULL) {
        rebalance(n->parent);
    }
    else {
        root = n;
    }
}
 
template <class T>
AVLnode<T>* AVLtree<T>::rotateLeft(AVLnode<T> *a) {
    AVLnode<T> *b = a->right;
    b->parent = a->parent;
    a->right = b->left;
 
    if (a->right != NULL)
        a->right->parent = a;
 
    b->left = a;
    a->parent = b;
 
    if (b->parent != NULL) {
        if (b->parent->right == a) {
            b->parent->right = b;
        }
        else {
            b->parent->left = b;
        }
    }
 
    setBalance(a);
    setBalance(b);
    return b;
}
 
template <class T>
AVLnode<T>* AVLtree<T>::rotateRight(AVLnode<T> *a) {
    AVLnode<T> *b = a->left;
    b->parent = a->parent;
    a->left = b->right;
 
    if (a->left != NULL)
        a->left->parent = a;
 
    b->right = a;
    a->parent = b;
 
    if (b->parent != NULL) {
        if (b->parent->right == a) {
            b->parent->right = b;
        }
        else {
            b->parent->left = b;
        }
    }
 
    setBalance(a);
    setBalance(b);
    return b;
}
 
template <class T>
AVLnode<T>* AVLtree<T>::rotateLeftThenRight(AVLnode<T> *n) {
    n->left = rotateLeft(n->left);
    return rotateRight(n);
}
 
template <class T>
AVLnode<T>* AVLtree<T>::rotateRightThenLeft(AVLnode<T> *n) {
    n->right = rotateRight(n->right);
    return rotateLeft(n);
}
 
template <class T>
int AVLtree<T>::height(AVLnode<T> *n) {
    if (n == NULL)
        return -1;
    return 1 + std::max(height(n->left), height(n->right));
}
 
template <class T>
void AVLtree<T>::setBalance(AVLnode<T> *n) {
    n->balance = height(n->right) - height(n->left);
}
 
template <class T>
void AVLtree<T>::printBalance(AVLnode<T> *n) {
    if (n != NULL) {
        printBalance(n->left);
        std::cout << n->balance << " ";
        printBalance(n->right);
    }
}
 
template <class T>
AVLtree<T>::AVLtree(void) : root(NULL) {}
 
template <class T>
AVLtree<T>::~AVLtree(void) {
    delete root;
}
 
template <class T>
bool AVLtree<T>::insert(T key) {
    if (root == NULL) {
        root = new AVLnode<T>(key, NULL);
    }
    else {
        AVLnode<T>
            *n = root,
            *parent;
 
        while (true) {
            if (n->key == key)
                return false;
 
            parent = n;
 
            bool goLeft = n->key > key;
            n = goLeft ? n->left : n->right;
 
            if (n == NULL) {
                if (goLeft) {
                    parent->left = new AVLnode<T>(key, parent);
                }
                else {
                    parent->right = new AVLnode<T>(key, parent);
                }
 
                rebalance(parent);
                break;
            }
        }
    }
 
    return true;
}
 
template <class T>
void AVLtree<T>::deleteKey(const T delKey) {
    if (root == NULL)
        return;
 
    AVLnode<T>
        *n       = root,
        *parent  = root,
        *delNode = NULL,
        *child   = root;
 
    while (child != NULL) {
        parent = n;
        n = child;
        child = delKey >= n->key ? n->right : n->left;
        if (delKey == n->key)
            delNode = n;
    }
 
    if (delNode != NULL) {
        delNode->key = n->key;
 
        child = n->left != NULL ? n->left : n->right;
 
        if (root->key == delKey) {
            root = child;
        }
        else {
            if (parent->left == n) {
                parent->left = child;
            }
            else {
                parent->right = child;
            }
 
            rebalance(parent);
        }
    }
}
 
template <class T>
void AVLtree<T>::printBalance() {
    printBalance(root);
    std::cout << std::endl;
}
 
int main(void)
{
    AVLtree<int> t;
 
    std::cout << "Inserting integer values 1 to 10" << std::endl;
    for (int i = 1; i <= 10; ++i)
        t.insert(i);
 
    std::cout << "Printing balance: ";
    t.printBalance();
}

输出:

Inserting integer values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0

C#

// Finite Ordered Sets - 4State - Balanced
 
using System;
using System.Collections.Generic;
 
public enum Direction { FromLeft, FromRight };
 
public enum State { Header, LeftHigh, Balanced, RightHigh };
 
public enum SetOperation
{
    Union,
    Intersection,
    SymmetricDifference,
    Difference,
    Equality,
    Inequality,
    Subset,
    Superset
}
 
public class Node
{
    public Node Left;
    public Node Right;
    public Node Parent;
    public State Balance;
 
    public Node()
    {
        Left = this;
        Right = this;
        Parent = null;
        Balance = State.Header;
    }
 
    public Node(Node p)
    {
        Left = null;
        Right = null;
        Parent = p;
        Balance = State.Balanced;
    }
 
    public bool IsHeader
    { get { return Balance == State.Header; } }
}
 
public class SetNode<T> : Node
{
    public T Data;
 
    public SetNode() { }
 
    public SetNode(T dataType, Node Parent) : base(Parent)
    {
        Data = dataType;
    }
 
    public override int GetHashCode()
    {
        return Data.GetHashCode();
    }
}
 
class Utility // Nongeneric Tree Balancing
{
    static void RotateLeft(ref Node Root)
    {
        Node Parent = Root.Parent;
        Node x = Root.Right;
 
        Root.Parent = x;
        x.Parent = Parent;
        if (x.Left != null) x.Left.Parent = Root;
 
        Root.Right = x.Left;
        x.Left = Root;
        Root = x;
    }
 
    static void RotateRight(ref Node Root)
    {
        Node Parent = Root.Parent;
        Node x = Root.Left;
 
        Root.Parent = x;
        x.Parent = Parent;
        if (x.Right != null) x.Right.Parent = Root;
 
        Root.Left = x.Right;
        x.Right = Root;
        Root = x;
    }
 
    static void BalanceLeft(ref Node Root)
    {
        Node Left = Root.Left;
 
        switch (Left.Balance)
        {
            case State.LeftHigh:
                Root.Balance = State.Balanced;
                Left.Balance = State.Balanced;
                RotateRight(ref Root);
                break;
 
            case State.RightHigh:
                {
                    Node subRight = Left.Right;
                    switch (subRight.Balance)
                    {
                        case State.Balanced:
                            Root.Balance = State.Balanced;
                            Left.Balance = State.Balanced;
                            break;
 
                        case State.RightHigh:
                            Root.Balance = State.Balanced;
                            Left.Balance = State.LeftHigh;
                            break;
 
                        case State.LeftHigh:
                            Root.Balance = State.RightHigh;
                            Left.Balance = State.Balanced;
                            break;
                    }
                    subRight.Balance = State.Balanced;
                    RotateLeft(ref Left);
                    Root.Left = Left;
                    RotateRight(ref Root);
                }
                break;
 
            case State.Balanced:
                Root.Balance = State.LeftHigh;
                Left.Balance = State.RightHigh;
                RotateRight(ref Root);
                break;
        }
    }
 
    static void BalanceRight(ref Node Root)
    {
        Node Right = Root.Right;
 
        switch (Right.Balance)
        {
            case State.RightHigh:
                Root.Balance = State.Balanced;
                Right.Balance = State.Balanced;
                RotateLeft(ref Root);
                break;
 
            case State.LeftHigh:
                {
                    Node subLeft = Right.Left; // Left Subtree of Right
                    switch (subLeft.Balance)
                    {
                        case State.Balanced:
                            Root.Balance = State.Balanced;
                            Right.Balance = State.Balanced;
                            break;
 
                        case State.LeftHigh:
                            Root.Balance = State.Balanced;
                            Right.Balance = State.RightHigh;
                            break;
 
                        case State.RightHigh:
                            Root.Balance = State.LeftHigh;
                            Right.Balance = State.Balanced;
                            break;
                    }
                    subLeft.Balance = State.Balanced;
                    RotateRight(ref Right);
                    Root.Right = Right;
                    RotateLeft(ref Root);
                }
                break;
 
            case State.Balanced:
                Root.Balance = State.RightHigh;
                Right.Balance = State.LeftHigh;
                RotateLeft(ref Root);
                break;
        }
    }
 
    public static void BalanceSet(Node Root, Direction From)
    {
        bool Taller = true;
 
        while (Taller)
        {
            Node Parent = Root.Parent;
            Direction NextFrom = (Parent.Left == Root) ? Direction.FromLeft : Direction.FromRight;
 
            if (From == Direction.FromLeft)
            {
                switch (Root.Balance)
                {
                    case State.LeftHigh:
                        if (Parent.IsHeader)
                            BalanceLeft(ref Parent.Parent);
                        else if (Parent.Left == Root)
                            BalanceLeft(ref Parent.Left);
                        else
                            BalanceLeft(ref Parent.Right);
                        Taller = false;
                        break;
 
                    case State.Balanced:
                        Root.Balance = State.LeftHigh;
                        Taller = true;
                        break;
 
                    case State.RightHigh:
                        Root.Balance = State.Balanced;
                        Taller = false;
                        break;
                }
            }
            else
            {
                switch (Root.Balance)
                {
                    case State.LeftHigh:
                        Root.Balance = State.Balanced;
                        Taller = false;
                        break;
 
                    case State.Balanced:
                        Root.Balance = State.RightHigh;
                        Taller = true;
                        break;
 
                    case State.RightHigh:
                        if (Parent.IsHeader)
                            BalanceRight(ref Parent.Parent);
                        else if (Parent.Left == Root)
                            BalanceRight(ref Parent.Left);
                        else
                            BalanceRight(ref Parent.Right);
                        Taller = false;
                        break;
                }
            }
 
            if (Taller) // skip up a level
            {
                if (Parent.IsHeader)
                    Taller = false;
                else
                {
                    Root = Parent;
                    From = NextFrom;
                }
            }
        }
    }
 
    public static void BalanceSetRemove(Node Root, Direction From)
    {
        if (Root.IsHeader) return;
 
        bool Shorter = true;
 
        while (Shorter)
        {
            Node Parent = Root.Parent;
            Direction NextFrom = (Parent.Left == Root) ? Direction.FromLeft : Direction.FromRight;
 
            if (From == Direction.FromLeft)
            {
                switch (Root.Balance)
                {
                    case State.LeftHigh:
                        Root.Balance = State.Balanced;
                        Shorter = true;
                        break;
 
                    case State.Balanced:
                        Root.Balance = State.RightHigh;
                        Shorter = false;
                        break;
 
                    case State.RightHigh:
                        if (Root.Right.Balance == State.Balanced)
                            Shorter = false;
                        else
                            Shorter = true;
                        if (Parent.IsHeader)
                            BalanceRight(ref Parent.Parent);
                        else if (Parent.Left == Root)
                            BalanceRight(ref Parent.Left);
                        else
                            BalanceRight(ref Parent.Right);
                        break;
                }
            }
            else
            {
                switch (Root.Balance)
                {
                    case State.RightHigh:
                        Root.Balance = State.Balanced;
                        Shorter = true;
                        break;
 
                    case State.Balanced:
                        Root.Balance = State.LeftHigh;
                        Shorter = false;
                        break;
 
                    case State.LeftHigh:
                        if (Root.Left.Balance == State.Balanced)
                            Shorter = false;
                        else
                            Shorter = true;
                        if (Parent.IsHeader)
                            BalanceLeft(ref Parent.Parent);
                        else if (Parent.Left == Root)
                            BalanceLeft(ref Parent.Left);
                        else
                            BalanceLeft(ref Parent.Right);
                        break;
                }
            }
 
            if (Shorter)
            {
                if (Parent.IsHeader)
                    Shorter = false;
                else
                {
                    From = NextFrom;
                    Root = Parent;
                }
            }
        }
    }
 
    public static Node PreviousItem(Node Node)
    {
        if (Node.IsHeader) { return Node.Right; }
 
        if (Node.Left != null)
        {
            Node = Node.Left;
            while (Node.Right != null) Node = Node.Right;
        }
        else
        {
            Node y = Node.Parent;
            if (y.IsHeader) return y;
            while (Node == y.Left) { Node = y; y = y.Parent; }
            Node = y;
        }
        return Node;
    }
 
    public static Node NextItem(Node Node)
    {
        if (Node.IsHeader) return Node.Left;
 
        if (Node.Right != null)
        {
            Node = Node.Right;
            while (Node.Left != null) Node = Node.Left;
        }
        else
        {
            Node y = Node.Parent;
            if (y.IsHeader) return y;
            while (Node == y.Right) { Node = y; y = y.Parent; }
            Node = y;
        }
        return Node;
    }
 
    public static ulong Depth(Node Root)
    {
        if (Root != null)
        {
            ulong Left = Root.Left != null ? Depth(Root.Left) : 0;
            ulong Right = Root.Right != null ? Depth(Root.Right) : 0;
            return Left < Right ? Right + 1 : Left + 1;
        }
        else
            return 0;
    }
 
    static void SwapNodeReference(ref Node First,
                                  ref Node Second)
    { Node Temporary = First; First = Second; Second = Temporary; }
 
    public static void SwapNodes(Node A, Node B)
    {
        if (B == A.Left)
        {
            if (B.Left != null) B.Left.Parent = A;
            if (B.Right != null) B.Right.Parent = A;
 
            if (A.Right != null) A.Right.Parent = B;
 
            if (!A.Parent.IsHeader)
            {
                if (A.Parent.Left == A)
                    A.Parent.Left = B;
                else
                    A.Parent.Right = B;
            }
            else A.Parent.Parent = B;
 
            B.Parent = A.Parent;
            A.Parent = B;
 
            A.Left = B.Left;
            B.Left = A;
 
            SwapNodeReference(ref A.Right, ref B.Right);
        }
        else if (B == A.Right)
        {
            if (B.Right != null) B.Right.Parent = A;
            if (B.Left != null) B.Left.Parent = A;
 
            if (A.Left != null) A.Left.Parent = B;
 
            if (!A.Parent.IsHeader)
            {
                if (A.Parent.Left == A)
                    A.Parent.Left = B;
                else
                    A.Parent.Right = B;
            }
            else A.Parent.Parent = B;
 
            B.Parent = A.Parent;
            A.Parent = B;
 
            A.Right = B.Right;
            B.Right = A;
 
            SwapNodeReference(ref A.Left, ref B.Left);
        }
        else if (A == B.Left)
        {
            if (A.Left != null) A.Left.Parent = B;
            if (A.Right != null) A.Right.Parent = B;
 
            if (B.Right != null) B.Right.Parent = A;
 
            if (!B.Parent.IsHeader)
            {
                if (B.Parent.Left == B)
                    B.Parent.Left = A;
                else
                    B.Parent.Right = A;
            }
            else B.Parent.Parent = A;
 
            A.Parent = B.Parent;
            B.Parent = A;
 
            B.Left = A.Left;
            A.Left = B;
 
            SwapNodeReference(ref A.Right, ref B.Right);
        }
        else if (A == B.Right)
        {
            if (A.Right != null) A.Right.Parent = B;
            if (A.Left != null) A.Left.Parent = B;
 
            if (B.Left != null) B.Left.Parent = A;
 
            if (!B.Parent.IsHeader)
            {
                if (B.Parent.Left == B)
                    B.Parent.Left = A;
                else
                    B.Parent.Right = A;
            }
            else B.Parent.Parent = A;
 
            A.Parent = B.Parent;
            B.Parent = A;
 
            B.Right = A.Right;
            A.Right = B;
 
            SwapNodeReference(ref A.Left, ref B.Left);
        }
        else
        {
            if (A.Parent == B.Parent)
                SwapNodeReference(ref A.Parent.Left, ref A.Parent.Right);
            else
            {
                if (!A.Parent.IsHeader)
                {
                    if (A.Parent.Left == A)
                        A.Parent.Left = B;
                    else
                        A.Parent.Right = B;
                }
                else A.Parent.Parent = B;
 
                if (!B.Parent.IsHeader)
                {
                    if (B.Parent.Left == B)
                        B.Parent.Left = A;
                    else
                        B.Parent.Right = A;
                }
                else B.Parent.Parent = A;
            }
 
            if (B.Left != null) B.Left.Parent = A;
            if (B.Right != null) B.Right.Parent = A;
 
            if (A.Left != null) A.Left.Parent = B;
            if (A.Right != null) A.Right.Parent = B;
 
            SwapNodeReference(ref A.Left, ref B.Left);
            SwapNodeReference(ref A.Right, ref B.Right);
            SwapNodeReference(ref A.Parent, ref B.Parent);
        }
 
        State Balance = A.Balance;
        A.Balance = B.Balance;
        B.Balance = Balance;
    }
}
 
public struct SetEntry<T> : IEnumerator<T>
{
    public SetEntry(Node N) { _Node = N; }
 
    public T Value
    {
        get
        {
            return ((SetNode<T>)_Node).Data;
        }
    }
 
    public bool IsEnd { get { return _Node.IsHeader; } }
 
    public bool MoveNext()
    {
        _Node = Utility.NextItem(_Node);
        return _Node.IsHeader ? false : true;
    }
 
    public bool MovePrevious()
    {
        _Node = Utility.PreviousItem(_Node);
        return _Node.IsHeader ? false : true;
    }
 
    public static SetEntry<T> operator ++(SetEntry<T> entry)
    {
        entry._Node = Utility.NextItem(entry._Node);
        return entry;
    }
 
    public static SetEntry<T> operator --(SetEntry<T> entry)
    {
        entry._Node = Utility.PreviousItem(entry._Node);
        return entry;
    }
 
    public void Reset()
    {
        while (!MoveNext()) ;
    }
 
    object System.Collections.IEnumerator.Current
    { get { return ((SetNode<T>)_Node).Data; } }
 
    T IEnumerator<T>.Current
    { get { return ((SetNode<T>)_Node).Data; } }
 
    public static bool operator ==(SetEntry<T> x, SetEntry<T> y) { return x._Node == y._Node; }
    public static bool operator !=(SetEntry<T> x, SetEntry<T> y) { return x._Node != y._Node; }
 
    public override bool Equals(object o) { return _Node == ((SetEntry<T>)o)._Node; }
 
    public override int GetHashCode() { return _Node.GetHashCode(); }
 
    public static SetEntry<T> operator +(SetEntry<T> C, ulong Increment)
    {
        SetEntry<T> Result = new SetEntry<T>(C._Node);
        for (ulong i = 0; i < Increment; i++) ++Result;
        return Result;
    }
 
    public static SetEntry<T> operator +(ulong Increment, SetEntry<T> C)
    {
        SetEntry<T> Result = new SetEntry<T>(C._Node);
        for (ulong i = 0; i < Increment; i++) ++Result;
        return Result;
    }
 
    public static SetEntry<T> operator -(SetEntry<T> C, ulong Decrement)
    {
        SetEntry<T> Result = new SetEntry<T>(C._Node);
        for (ulong i = 0; i < Decrement; i++) --Result;
        return Result;
    }
 
    public override string ToString()
    {
        return Value.ToString();
    }
 
    public void Dispose() { }
 
    public Node _Node;
}
 
class Set<T> : IEnumerable<T>
{
    IComparer<T> Comparer;
    Node Header;
    ulong Nodes;
 
    //*** Constructors ***
 
    public Set()
    {
        Comparer = Comparer<T>.Default;
        Header = new Node();
        Nodes = 0;
    }
 
    public Set(IComparer<T> c)
    {
        Comparer = c;
        Header = new Node();
        Nodes = 0;
    }
 
    //*** Properties ***
 
    SetNode<T> Root
    {
        get { return (SetNode<T>)Header.Parent; }
        set { Header.Parent = value; }
    }
 
    Node LeftMost
    {
        get { return Header.Left; }
        set { Header.Left = value; }
    }
 
    Node RightMost
    {
        get { return Header.Right; }
        set { Header.Right = value; }
    }
 
    public SetEntry<T> Begin
    { get { return new SetEntry<T>(Header.Left); } }
 
    public SetEntry<T> End
    { get { return new SetEntry<T>(Header); } }
 
    public ulong Length { get { return Nodes; } }
 
    public ulong Depth { get { return Utility.Depth(Root); } }
 
    //*** Operators ***
 
    public bool this[T key] { get { return Search(key); } }
 
    public static Set<T> operator +(Set<T> set, T t)
    {
        set.Add(t); return set;
    }
 
    public static Set<T> operator -(Set<T> set, T t)
    {
        set.Remove(t); return set;
    }
 
    public static Set<T> operator |(Set<T> A, Set<T> B)
    {
        Set<T> U = new Set<T>(A.Comparer);
        CombineSets(A, B, U, SetOperation.Union);
        return U;
    }
 
    public static Set<T> operator &(Set<T> A, Set<T> B)
    {
        Set<T> I = new Set<T>(A.Comparer);
        CombineSets(A, B, I, SetOperation.Intersection);
        return I;
    }
 
    public static Set<T> operator ^(Set<T> A, Set<T> B)
    {
        Set<T> S = new Set<T>(A.Comparer);
        CombineSets(A, B, S, SetOperation.SymmetricDifference);
        return S;
    }
 
    public static Set<T> operator -(Set<T> A, Set<T> B)
    {
        Set<T> S = new Set<T>(A.Comparer);
        CombineSets(A, B, S, SetOperation.Difference);
        return S;
    }
 
    public static bool operator ==(Set<T> A, Set<T> B)
    {
        return CheckSets(A, B, SetOperation.Equality);
    }
 
    public static bool operator !=(Set<T> A, Set<T> B)
    {
        return CheckSets(A, B, SetOperation.Inequality);
    }
 
    public override bool Equals(object o)
    {
        return CheckSets(this, (Set<T>)o, SetOperation.Equality);
    }
 
 
    //*** Methods ***
 
    public void Add(T key)
    {
        if (Root == null)
        {
            Root = new SetNode<T>(key, Header);
            LeftMost = RightMost = Root;
        }
        else
        {
            SetNode<T> Search = Root;
            for (; ; )
            {
                int Compare = Comparer.Compare(key, Search.Data);
 
                if (Compare == 0) // Item Exists
                    throw new EntryAlreadyExistsException();
 
                else if (Compare < 0)
                {
                    if (Search.Left != null)
                        Search = (SetNode<T>)Search.Left;
                    else
                    {
                        Search.Left = new SetNode<T>(key, Search);
                        if (LeftMost == Search) LeftMost = (SetNode<T>)Search.Left;
                        Utility.BalanceSet(Search, Direction.FromLeft);
                        Nodes++;
                        break;
                    }
                }
 
                else
                {
                    if (Search.Right != null)
                        Search = (SetNode<T>)Search.Right;
                    else
                    {
                        Search.Right = new SetNode<T>(key, Search);
                        if (RightMost == Search) RightMost = (SetNode<T>)Search.Right;
                        Utility.BalanceSet(Search, Direction.FromRight);
                        Nodes++;
                        break;
                    }
                }
            }
        }
    }
 
    System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
    { return new SetEntry<T>(Header); }
 
    IEnumerator<T> IEnumerable<T>.GetEnumerator()
    { return new SetEntry<T>(Header); }
 
    public override int GetHashCode()
    {
        return GetHashCode((SetNode<T>)Header.Parent);
    }
 
    int GetHashCode(SetNode<T> Root)
    {
        if (Root != null)
        {
            int HashCode = Root.GetHashCode();
 
            if (Root.Left != null)
                HashCode += GetHashCode((SetNode<T>)Root.Left);
 
            if (Root.Right != null)
                HashCode += GetHashCode((SetNode<T>)Root.Right);
 
            return HashCode;
        }
 
        return 0;
    }
 
 
    public void Remove(T key)
    {
        SetNode<T> root = Root;
 
        for (; ; )
        {
            if (root == null)
                throw new EntryNotFoundException();
 
            int Compare = Comparer.Compare(key, root.Data);
 
            if (Compare < 0)
                root = (SetNode<T>)root.Left;
 
            else if (Compare > 0)
                root = (SetNode<T>)root.Right;
 
            else // Item is found
            {
                if (root.Left != null && root.Right != null)
                {
                    SetNode<T> replace = (SetNode<T>)root.Left;
                    while (replace.Right != null) replace = (SetNode<T>)replace.Right;
                    Utility.SwapNodes(root, replace);
                }
 
                SetNode<T> Parent = (SetNode<T>)root.Parent;
 
                Direction From = (Parent.Left == root) ? Direction.FromLeft : Direction.FromRight;
 
                if (LeftMost == root)
                {
                    SetEntry<T> e = new SetEntry<T>(root); e.MoveNext();
 
                    if (e._Node.IsHeader)
                    { LeftMost = Header; RightMost = Header; }
                    else
                        LeftMost = e._Node;
                }
                else if (RightMost == root)
                {
                    SetEntry<T> e = new SetEntry<T>(root); e.MovePrevious();
 
                    if (e._Node.IsHeader)
                    { LeftMost = Header; RightMost = Header; }
                    else
                        RightMost = e._Node;
                }
 
                if (root.Left == null)
                {
                    if (Parent == Header)
                        Header.Parent = root.Right;
                    else if (Parent.Left == root)
                        Parent.Left = root.Right;
                    else
                        Parent.Right = root.Right;
 
                    if (root.Right != null) root.Right.Parent = Parent;
                }
                else
                {
                    if (Parent == Header)
                        Header.Parent = root.Left;
                    else if (Parent.Left == root)
                        Parent.Left = root.Left;
                    else
                        Parent.Right = root.Left;
 
                    if (root.Left != null) root.Left.Parent = Parent;
                }
 
                Utility.BalanceSetRemove(Parent, From);
                Nodes--;
                break;
            }
        }
    }
 
    public bool Search(T key)
    {
        if (Root == null)
            return false;
        else
        {
            SetNode<T> Search = Root;
 
            do
            {
                int Result = Comparer.Compare(key, Search.Data);
 
                if (Result < 0) Search = (SetNode<T>)Search.Left;
 
                else if (Result > 0) Search = (SetNode<T>)Search.Right;
 
                else break;
 
            } while (Search != null);
 
            if (Search == null)
                return false;
            else
                return true;
        }
    }
 
    public override string ToString()
    {
        string StringOut = "{";
 
        SetEntry<T> start = Begin;
        SetEntry<T> end = End;
        SetEntry<T> last = End - 1;
 
        while (start != end)
        {
            string new_StringOut = start.Value.ToString();
            if (start != last) new_StringOut = new_StringOut + ",";
            StringOut = StringOut + new_StringOut;
            ++start;
        }
 
        StringOut = StringOut + "}";
        return StringOut;
    }
 
    public void Validate()
    {
        if (Nodes == 0 || Root == null)
        {
            if (Nodes != 0) { throw new InvalidEmptyTreeException(); }
            if (Root != null) { throw new InvalidEmptyTreeException(); }
            if (LeftMost != Header) { throw new InvalidEndItemException(); }
            if (RightMost != Header) { throw new InvalidEndItemException(); }
        }
 
        Validate(Root);
 
        if (Root != null)
        {
            SetNode<T> x = Root;
            while (x.Left != null) x = (SetNode<T>)x.Left;
 
            if (LeftMost != x) throw new InvalidEndItemException();
 
            SetNode<T> y = Root;
            while (y.Right != null) y = (SetNode<T>)y.Right;
 
            if (RightMost != y) throw new InvalidEndItemException();
        }
    }
 
    void Validate(SetNode<T> root)
    {
        if (root == null) return;
 
        if (root.Left != null)
        {
            SetNode<T> Left = (SetNode<T>)root.Left;
 
            if (Comparer.Compare(Left.Data, root.Data) >= 0)
                throw new OutOfKeyOrderException();
 
            if (Left.Parent != root)
                throw new TreeInvalidParentException();
 
            Validate((SetNode<T>)root.Left);
        }
 
        if (root.Right != null)
        {
            SetNode<T> Right = (SetNode<T>)root.Right;
 
            if (Comparer.Compare(Right.Data, root.Data) <= 0)
                throw new OutOfKeyOrderException();
 
            if (Right.Parent != root)
                throw new TreeInvalidParentException();
 
            Validate((SetNode<T>)root.Right);
        }
 
        ulong depth_Left = root.Left != null ? Utility.Depth(root.Left) : 0;
        ulong depth_Right = root.Right != null ? Utility.Depth(root.Right) : 0;
 
        if (depth_Left > depth_Right && depth_Left - depth_Right > 2)
            throw new TreeOutOfBalanceException();
 
        if (depth_Left < depth_Right && depth_Right - depth_Left > 2)
            throw new TreeOutOfBalanceException();
    }
 
    public static void CombineSets(Set<T> A,
                                   Set<T> B,
                                   Set<T> R,
                                   SetOperation operation)
    {
        IComparer<T> TComparer = R.Comparer;
        SetEntry<T> First1 = A.Begin;
        SetEntry<T> Last1 = A.End;
        SetEntry<T> First2 = B.Begin;
        SetEntry<T> Last2 = B.End;
 
        switch (operation)
        {
            case SetOperation.Union:
                while (First1 != Last1 && First2 != Last2)
                {
                    int Order = TComparer.Compare(First1.Value, First2.Value);
 
                    if (Order < 0)
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                    }
 
                    else if (Order > 0)
                    {
                        R.Add(First2.Value);
                        First2.MoveNext();
                    }
 
                    else
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                        First2.MoveNext();
                    }
                }
                while (First1 != Last1)
                {
                    R.Add(First1.Value);
                    First1.MoveNext();
                }
                while (First2 != Last2)
                {
                    R.Add(First2.Value);
                    First2.MoveNext();
                }
                return;
 
            case SetOperation.Intersection:
                while (First1 != Last1 && First2 != Last2)
                {
                    int Order = TComparer.Compare(First1.Value, First2.Value);
 
                    if (Order < 0)
                        First1.MoveNext();
 
                    else if (Order > 0)
                        First2.MoveNext();
 
                    else
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                        First2.MoveNext();
                    }
                }
                return;
 
            case SetOperation.SymmetricDifference:
                while (First1 != Last1 && First2 != Last2)
                {
                    int Order = TComparer.Compare(First1.Value, First2.Value);
 
                    if (Order < 0)
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                    }
 
                    else if (Order > 0)
                    {
                        R.Add(First2.Value);
                        First2.MoveNext();
                    }
 
                    else
                    { First1.MoveNext(); First2.MoveNext(); }
                }
 
                while (First1 != Last1)
                {
                    R.Add(First1.Value);
                    First1.MoveNext();
                }
 
                while (First2 != Last2)
                {
                    R.Add(First2.Value);
                    First2.MoveNext();
                }
                return;
 
            case SetOperation.Difference:
                while (First1 != Last1 && First2 != Last2)
                {
                    int Order = TComparer.Compare(First1.Value, First2.Value);
 
                    if (Order < 0)
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                    }
 
                    else if (Order > 0)
                    {
                        R.Add(First1.Value);
                        First1.MoveNext();
                        First2.MoveNext();
                    }
 
                    else
                    { First1.MoveNext(); First2.MoveNext(); }
                }
 
                while (First1 != Last1)
                {
                    R.Add(First1.Value);
                    First1.MoveNext();
                }
                return;
        }
 
        throw new InvalidSetOperationException();
    }
 
    public static bool CheckSets(Set<T> A,
                                 Set<T> B,
                                 SetOperation operation)
    {
        IComparer<T> TComparer = A.Comparer;
        SetEntry<T> First1 = A.Begin;
        SetEntry<T> Last1 = A.End;
        SetEntry<T> First2 = B.Begin;
        SetEntry<T> Last2 = B.End;
 
        switch (operation)
        {
            case SetOperation.Equality:
            case SetOperation.Inequality:
                {
                    bool Equals = true;
 
                    while (First1 != Last1 && First2 != Last2)
                    {
                        if (TComparer.Compare(First1.Value, First2.Value) == 0)
                        { First1.MoveNext(); First2.MoveNext(); }
                        else
                        { Equals = false; break; }
                    }
 
                    if (Equals)
                    {
                        if (First1 != Last1) Equals = false;
                        if (First2 != Last2) Equals = false;
                    }
 
                    if (operation == SetOperation.Equality)
                        return Equals;
                    else
                        return !Equals;
                }
 
            case SetOperation.Subset:
            case SetOperation.Superset:
                {
                    bool Subset = true;
 
                    while (First1 != Last1 && First2 != Last2)
                    {
                        int Order = TComparer.Compare(First1.Value, First2.Value);
 
                        if (Order < 0)
                        { Subset = false; break; }
 
                        else if (Order > 0)
                            First2.MoveNext();
 
                        else
                        { First1.MoveNext(); First2.MoveNext(); }
                    }
 
                    if (Subset)
                        if (First1 != Last1) Subset = false;
 
                    if (operation == SetOperation.Subset)
                        return Subset;
                    else
                        return !Subset;
                }
        }
 
        throw new InvalidSetOperationException();
    }
}
 
public class EntryNotFoundException : Exception
{
    static String message = "The requested entry could not be located in the specified collection.";
 
    public EntryNotFoundException() : base(message) { }
}
 
public class EntryAlreadyExistsException : Exception
{
    static String message = "The requested entry already resides in the collection.";
 
    public EntryAlreadyExistsException() : base(message) { }
}
 
public class InvalidEndItemException : Exception
{
    static String message = "The validation routines detected that the end item of a tree is invalid.";
 
    public InvalidEndItemException() : base(message) { }
}
 
public class InvalidEmptyTreeException : Exception
{
    static String message = "The validation routines detected that an empty tree is invalid.";
 
    public InvalidEmptyTreeException() : base(message) { }
}
 
public class OutOfKeyOrderException : Exception
{
    static String message = "A trees was found to be out of key order.";
 
    public OutOfKeyOrderException() : base(message) { }
}
 
public class TreeInvalidParentException : Exception
{
    static String message = "The validation routines detected that the Parent structure of a tree is invalid.";
 
    public TreeInvalidParentException() : base(message) { }
}
 
public class TreeOutOfBalanceException : Exception
{
    static String message = "The validation routines detected that the tree is out of State.";
 
    public TreeOutOfBalanceException() : base(message) { }
}
 
public class InvalidSetOperationException : Exception
{
    static String message = "An invalid set operation was requested.";
 
    public InvalidSetOperationException() : base(message) { }
}
 
class Program
{
    static void Main()
    {
        Set<string> s = new Set<string>() {"S0","S1","S2","S3","S4",
                                           "S5","S6","S7","S8","S9"};
 
        Console.WriteLine("Depth = {0}", s.Depth);
 
        s.Validate();
 
        for (int i = 0; i < 10; i += 2)
            s.Remove("S" + i.ToString());
 
        Console.WriteLine("Depth = {0}", s.Depth);
 
        s.Validate();
 
        Console.WriteLine("{0}", s);
 
        Set<int> A = new Set<int>() { 1, 3, 5, 7 };
        Set<int> B = new Set<int>() { 2, 4, 6, 8 };
 
        Set<int> U = A | B;
 
        Console.WriteLine("{0} | {1} == {2}", A, B, U);
    }
}

Go

package avl
 
// AVL tree adapted from Julienne Walker's presentation at
// http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_avl.aspx.
// This port uses similar indentifier names.
 
// The Key interface must be supported by data stored in the AVL tree.
type Key interface {
    Less(Key) bool
    Eq(Key) bool
}
 
// Node is a node in an AVL tree.
type Node struct {
    Data    Key      // anything comparable with Less and Eq.
    Balance int      // balance factor
    Link    [2]*Node // children, indexed by "direction", 0 or 1.
}
 
// A little readability function for returning the opposite of a direction,
// where a direction is 0 or 1.  Go inlines this.
// Where JW writes !dir, this code has opp(dir).
func opp(dir int) int {
    return 1 - dir
}
 
// single rotation
func single(root *Node, dir int) *Node {
    save := root.Link[opp(dir)]
    root.Link[opp(dir)] = save.Link[dir]
    save.Link[dir] = root
    return save
}
 
// double rotation
func double(root *Node, dir int) *Node {
    save := root.Link[opp(dir)].Link[dir]
 
    root.Link[opp(dir)].Link[dir] = save.Link[opp(dir)]
    save.Link[opp(dir)] = root.Link[opp(dir)]
    root.Link[opp(dir)] = save
 
    save = root.Link[opp(dir)]
    root.Link[opp(dir)] = save.Link[dir]
    save.Link[dir] = root
    return save
}
 
// adjust valance factors after double rotation
func adjustBalance(root *Node, dir, bal int) {
    n := root.Link[dir]
    nn := n.Link[opp(dir)]
    switch nn.Balance {
    case 0:
        root.Balance = 0
        n.Balance = 0
    case bal:
        root.Balance = -bal
        n.Balance = 0
    default:
        root.Balance = 0
        n.Balance = bal
    }
    nn.Balance = 0
}
 
func insertBalance(root *Node, dir int) *Node {
    n := root.Link[dir]
    bal := 2*dir - 1
    if n.Balance == bal {
        root.Balance = 0
        n.Balance = 0
        return single(root, opp(dir))
    }
    adjustBalance(root, dir, bal)
    return double(root, opp(dir))
}
 
func insertR(root *Node, data Key) (*Node, bool) {
    if root == nil {
        return &Node{Data: data}, false
    }
    dir := 0
    if root.Data.Less(data) {
        dir = 1
    }
    var done bool
    root.Link[dir], done = insertR(root.Link[dir], data)
    if done {
        return root, true
    }
    root.Balance += 2*dir - 1
    switch root.Balance {
    case 0:
        return root, true
    case 1, -1:
        return root, false
    }
    return insertBalance(root, dir), true
}
 
// Insert a node into the AVL tree.
// Data is inserted even if other data with the same key already exists.
func Insert(tree **Node, data Key) {
    *tree, _ = insertR(*tree, data)
}
 
func removeBalance(root *Node, dir int) (*Node, bool) {
    n := root.Link[opp(dir)]
    bal := 2*dir - 1
    switch n.Balance {
    case -bal:
        root.Balance = 0
        n.Balance = 0
        return single(root, dir), false
    case bal:
        adjustBalance(root, opp(dir), -bal)
        return double(root, dir), false
    }
    root.Balance = -bal
    n.Balance = bal
    return single(root, dir), true
}
 
func removeR(root *Node, data Key) (*Node, bool) {
    if root == nil {
        return nil, false
    }
    if root.Data.Eq(data) {
        switch {
        case root.Link[0] == nil:
            return root.Link[1], false
        case root.Link[1] == nil:
            return root.Link[0], false
        }
        heir := root.Link[0]
        for heir.Link[1] != nil {
            heir = heir.Link[1]
        }
        root.Data = heir.Data
        data = heir.Data
    }
    dir := 0
    if root.Data.Less(data) {
        dir = 1
    }
    var done bool
    root.Link[dir], done = removeR(root.Link[dir], data)
    if done {
        return root, true
    }
    root.Balance += 1 - 2*dir
    switch root.Balance {
    case 1, -1:
        return root, true
    case 0:
        return root, false
    }
    return removeBalance(root, dir)
}
 
// Remove a single item from an AVL tree.
// If key does not exist, function has no effect.
func Remove(tree **Node, data Key) {
    *tree, _ = removeR(*tree, data)
}

示例:

package main
 
import (
    "encoding/json"
    "fmt"
    "log"
 
    "avl"
)
 
type intKey int
 
// satisfy avl.Key
func (k intKey) Less(k2 avl.Key) bool { return k < k2.(intKey) }
func (k intKey) Eq(k2 avl.Key) bool   { return k == k2.(intKey) }
 
// use json for cheap tree visualization
func dump(tree *avl.Node) {
    b, err := json.MarshalIndent(tree, "", "   ")
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println(string(b))
}
 
func main() {
    var tree *avl.Node
    fmt.Println("Empty tree:")
    dump(tree)
 
    fmt.Println("\nInsert test:")
    avl.Insert(&tree, intKey(3))
    avl.Insert(&tree, intKey(1))
    avl.Insert(&tree, intKey(4))
    avl.Insert(&tree, intKey(1))
    avl.Insert(&tree, intKey(5))
    dump(tree)
 
    fmt.Println("\nRemove test:")
    avl.Remove(&tree, intKey(3))
    avl.Remove(&tree, intKey(1))
    dump(tree)
}

输出:

Empty tree:
null

Insert test:
{
   "Data": 3,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": -1,
         "Link": [
            {
               "Data": 1,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            },
            null
         ]
      },
      {
         "Data": 4,
         "Balance": 1,
         "Link": [
            null,
            {
               "Data": 5,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            }
         ]
      }
   ]
}

Remove test:
{
   "Data": 4,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      },
      {
         "Data": 5,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      }
   ]
}

Java

public class AVLtree {
 
    private Node root;
 
    private static class Node {
        private int key;
        private int balance;
        private int height;
        private Node left;
        private Node right;
        private Node parent;
 
        Node(int key, Node parent) {
            this.key = key;
            this.parent = parent;
        }
    }
 
    public boolean insert(int key) {
        if (root == null) {
            root = new Node(key, null);
            return true;
        }
 
        Node n = root;
        while (true) {
            if (n.key == key)
                return false;
 
            Node parent = n;
 
            boolean goLeft = n.key > key;
            n = goLeft ? n.left : n.right;
 
            if (n == null) {
                if (goLeft) {
                    parent.left = new Node(key, parent);
                } else {
                    parent.right = new Node(key, parent);
                }
                rebalance(parent);
                break;
            }
        }
        return true;
    }
 
    private void delete(Node node) {
        if (node.left == null && node.right == null) {
            if (node.parent == null) {
                root = null;
            } else {
                Node parent = node.parent;
                if (parent.left == node) {
                    parent.left = null;
                } else {
                    parent.right = null;
                }
                rebalance(parent);
            }
            return;
        }
 
        if (node.left != null) {
            Node child = node.left;
            while (child.right != null) child = child.right;
            node.key = child.key;
            delete(child);
        } else {
            Node child = node.right;
            while (child.left != null) child = child.left;
            node.key = child.key;
            delete(child);
        }
    }
 
    public void delete(int delKey) {
        if (root == null)
            return;
 
        Node child = root;
        while (child != null) {
            Node node = child;
            child = delKey >= node.key ? node.right : node.left;
            if (delKey == node.key) {
                delete(node);
                return;
            }
        }
    }
 
    private void rebalance(Node n) {
        setBalance(n);
 
        if (n.balance == -2) {
            if (height(n.left.left) >= height(n.left.right))
                n = rotateRight(n);
            else
                n = rotateLeftThenRight(n);
 
        } else if (n.balance == 2) {
            if (height(n.right.right) >= height(n.right.left))
                n = rotateLeft(n);
            else
                n = rotateRightThenLeft(n);
        }
 
        if (n.parent != null) {
            rebalance(n.parent);
        } else {
            root = n;
        }
    }
 
    private Node rotateLeft(Node a) {
 
        Node b = a.right;
        b.parent = a.parent;
 
        a.right = b.left;
 
        if (a.right != null)
            a.right.parent = a;
 
        b.left = a;
        a.parent = b;
 
        if (b.parent != null) {
            if (b.parent.right == a) {
                b.parent.right = b;
            } else {
                b.parent.left = b;
            }
        }
 
        setBalance(a, b);
 
        return b;
    }
 
    private Node rotateRight(Node a) {
 
        Node b = a.left;
        b.parent = a.parent;
 
        a.left = b.right;
 
        if (a.left != null)
            a.left.parent = a;
 
        b.right = a;
        a.parent = b;
 
        if (b.parent != null) {
            if (b.parent.right == a) {
                b.parent.right = b;
            } else {
                b.parent.left = b;
            }
        }
 
        setBalance(a, b);
 
        return b;
    }
 
    private Node rotateLeftThenRight(Node n) {
        n.left = rotateLeft(n.left);
        return rotateRight(n);
    }
 
    private Node rotateRightThenLeft(Node n) {
        n.right = rotateRight(n.right);
        return rotateLeft(n);
    }
 
    private int height(Node n) {
        if (n == null)
            return -1;
        return n.height;
    }
 
    private void setBalance(Node... nodes) {
        for (Node n : nodes) {
            reheight(n);
            n.balance = height(n.right) - height(n.left);
        }
    }
 
    public void printBalance() {
        printBalance(root);
    }
 
    private void printBalance(Node n) {
        if (n != null) {
            printBalance(n.left);
            System.out.printf("%s ", n.balance);
            printBalance(n.right);
        }
    }
 
    private void reheight(Node node) {
        if (node != null) {
            node.height = 1 + Math.max(height(node.left), height(node.right));
        }
    }
 
    public static void main(String[] args) {
        AVLtree tree = new AVLtree();
 
        System.out.println("Inserting values 1 to 10");
        for (int i = 1; i < 10; i++)
            tree.insert(i);
 
        System.out.print("Printing balance: ");
        tree.printBalance();
    }
}

Kotlin

class AvlTree {
    private var root: Node? = null
 
    private class Node(var key: Int, var parent: Node?) {
        var balance: Int = 0
        var left : Node? = null
        var right: Node? = null
    }
 
    fun insert(key: Int): Boolean {
        if (root == null)
            root = Node(key, null)
        else {
            var n: Node? = root
            var parent: Node
            while (true) {
                if (n!!.key == key) return false
                parent = n
                val goLeft = n.key > key
                n = if (goLeft) n.left else n.right
                if (n == null) {
                    if (goLeft)
                        parent.left  = Node(key, parent)
                    else
                        parent.right = Node(key, parent)
                    rebalance(parent)
                    break
                }
            }
        }
        return true
    }
 
    fun delete(delKey: Int) {
        if (root == null) return
        var n:       Node? = root
        var parent:  Node? = root
        var delNode: Node? = null
        var child:   Node? = root
        while (child != null) {
            parent = n
            n = child
            child = if (delKey >= n.key) n.right else n.left
            if (delKey == n.key) delNode = n
        }
        if (delNode != null) {
            delNode.key = n!!.key
            child = if (n.left != null) n.left else n.right
            if (0 == root!!.key.compareTo(delKey)) {
                root = child
 
                if (null != root) {
                    root!!.parent = null
                }
 
            } else {
                if (parent!!.left == n)
                    parent.left = child
                else
                    parent.right = child
 
                if (null != child) {
                    child.parent = parent
                }
 
                rebalance(parent)
            }
    }
 
    private fun rebalance(n: Node) {
        setBalance(n)
        var nn = n
        if (nn.balance == -2)
            if (height(nn.left!!.left) >= height(nn.left!!.right))
                nn = rotateRight(nn)
            else
                nn = rotateLeftThenRight(nn)
        else if (nn.balance == 2)
            if (height(nn.right!!.right) >= height(nn.right!!.left))
                nn = rotateLeft(nn)
            else
                nn = rotateRightThenLeft(nn)
        if (nn.parent != null) rebalance(nn.parent!!)
        else root = nn
    }
 
    private fun rotateLeft(a: Node): Node {
        val b: Node? = a.right
        b!!.parent = a.parent
        a.right = b.left
        if (a.right != null) a.right!!.parent = a
        b.left = a
        a.parent = b
        if (b.parent != null) {
            if (b.parent!!.right == a)
                b.parent!!.right = b
            else
                b.parent!!.left = b
        }
        setBalance(a, b)
        return b
    }
 
    private fun rotateRight(a: Node): Node {
        val b: Node? = a.left
        b!!.parent = a.parent
        a.left = b.right
        if (a.left != null) a.left!!.parent = a
        b.right = a
        a.parent = b
        if (b.parent != null) {
            if (b.parent!!.right == a)
                b.parent!!.right = b
            else
                b.parent!!.left = b
        }
        setBalance(a, b)
        return b
    }
 
    private fun rotateLeftThenRight(n: Node): Node {
        n.left = rotateLeft(n.left!!)
        return rotateRight(n)
    }
 
    private fun rotateRightThenLeft(n: Node): Node {
        n.right = rotateRight(n.right!!)
        return rotateLeft(n)
    }
 
    private fun height(n: Node?): Int {
        if (n == null) return -1
        return 1 + Math.max(height(n.left), height(n.right))
    }
 
    private fun setBalance(vararg nodes: Node) {
        for (n in nodes) n.balance = height(n.right) - height(n.left)
    }
 
    fun printKey() {
        printKey(root)
        println()
    }
 
    private fun printKey(n: Node?) {
        if (n != null) {
            printKey(n.left)
            print("${n.key} ")
            printKey(n.right)
        }
    }
 
    fun printBalance() {
        printBalance(root)
        println()
    }
 
    private fun printBalance(n: Node?) {
        if (n != null) {
            printBalance(n.left)
            print("${n.balance} ")
            printBalance(n.right)
        }
    }
}
 
fun main(args: Array<String>) {
    val tree = AvlTree()
    println("Inserting values 1 to 10")
    for (i in 1..10) tree.insert(i)
    print("Printing key     : ")
    tree.printKey()
    print("Printing balance : ")
    tree.printBalance()
}

输出:

Inserting values 1 to 10
Printing key : 1 2 3 4 5 6 7 8 9 10
Printing balance : 0 0 0 1 0 0 0 0 1 0

Python

class AVLNode(object):
    """A node in the AVL tree."""
 
    def __init__(self, parent, k):
        """Creates a node.
 
        Args:
            parent: The node's parent.
            k: key of the node.
        """
        self.key = k
        self.parent = parent
        self.left = None
        self.right = None
 
    def _str(self):
        """Internal method for ASCII art."""
        label = str(self.key)
        if self.left is None:
            left_lines, left_pos, left_width = [], 0, 0
        else:
            left_lines, left_pos, left_width = self.left._str()
        if self.right is None:
            right_lines, right_pos, right_width = [], 0, 0
        else:
            right_lines, right_pos, right_width = self.right._str()
        middle = max(right_pos + left_width - left_pos + 1, len(label), 2)
        pos = left_pos + middle // 2
        width = left_pos + middle + right_width - right_pos
        while len(left_lines) < len(right_lines):
            left_lines.append(' ' * left_width)
        while len(right_lines) < len(left_lines):
            right_lines.append(' ' * right_width)
        if (middle - len(label)) % 2 == 1 and self.parent is not None and \
           self is self.parent.left and len(label) < middle:
            label += '.'
        label = label.center(middle, '.')
        if label[0] == '.': label = ' ' + label[1:]
        if label[-1] == '.': label = label[:-1] + ' '
        lines = [' ' * left_pos + label + ' ' * (right_width - right_pos),
                 ' ' * left_pos + '/' + ' ' * (middle-2) +
                 '\\' + ' ' * (right_width - right_pos)] + \
          [left_line + ' ' * (width - left_width - right_width) + right_line
           for left_line, right_line in zip(left_lines, right_lines)]
        return lines, pos, width
 
    def __str__(self):
        return '\n'.join(self._str()[0])
 
    def find(self, k):
        """Finds and returns the node with key k from the subtree rooted at this 
        node.
 
        Args:
            k: The key of the node we want to find.
 
        Returns:
            The node with key k.
        """
        if k == self.key:
            return self
        elif k < self.key:
            if self.left is None:
                return None
            else:
                return self.left.find(k)
        else:
            if self.right is None:  
                return None
            else:
                return self.right.find(k)
 
    def find_min(self):
        """Finds the node with the minimum key in the subtree rooted at this 
        node.
 
        Returns:
            The node with the minimum key.
        """
        current = self
        while current.left is not None:
            current = current.left
        return current
 
    def next_larger(self):
        """Returns the node with the next larger key (the successor) in the BST.
        """
        if self.right is not None:
            return self.right.find_min()
        current = self
        while current.parent is not None and current is current.parent.right:
            current = current.parent
        return current.parent
 
    def insert(self, node):
        """Inserts a node into the subtree rooted at this node.
 
        Args:
            node: The node to be inserted.
        """
        if node is None:
            return
        if node.key < self.key:
            if self.left is None:
                node.parent = self
                self.left = node
            else:
                self.left.insert(node)
        else:
            if self.right is None:
                node.parent = self
                self.right = node
            else:
                self.right.insert(node)
 
    def delete(self):
        """Deletes and returns this node from the tree."""
        if self.left is None or self.right is None:
            if self is self.parent.left:
                self.parent.left = self.left or self.right
                if self.parent.left is not None:
                    self.parent.left.parent = self.parent
            else:
                self.parent.right = self.left or self.right
                if self.parent.right is not None:
                    self.parent.right.parent = self.parent
            return self
        else:
            s = self.next_larger()
            self.key, s.key = s.key, self.key
            return s.delete()
 
def height(node):
    if node is None:
        return -1
    else:
        return node.height
 
def update_height(node):
    node.height = max(height(node.left), height(node.right)) + 1
 
class AVL(object):
    """
    AVL binary search tree implementation.
    """
 
    def __init__(self):
        """ empty tree """
        self.root = None
 
    def __str__(self):
        if self.root is None: return ''
        return str(self.root)
 
    def find(self, k):
        """Finds and returns the node with key k from the subtree rooted at this 
        node.
 
        Args:
            k: The key of the node we want to find.
 
        Returns:
            The node with key k or None if the tree is empty.
        """
        return self.root and self.root.find(k)
 
    def find_min(self):
        """Returns the minimum node of this BST."""
 
        return self.root and self.root.find_min()
 
    def next_larger(self, k):
        """Returns the node that contains the next larger (the successor) key in
        the BST in relation to the node with key k.
 
        Args:
            k: The key of the node of which the successor is to be found.
 
        Returns:
            The successor node.
        """
        node = self.find(k)
        return node and node.next_larger()   
 
    def left_rotate(self, x):
        y = x.right
        y.parent = x.parent
        if y.parent is None:
            self.root = y
        else:
            if y.parent.left is x:
                y.parent.left = y
            elif y.parent.right is x:
                y.parent.right = y
        x.right = y.left
        if x.right is not None:
            x.right.parent = x
        y.left = x
        x.parent = y
        update_height(x)
        update_height(y)
 
    def right_rotate(self, x):
        y = x.left
        y.parent = x.parent
        if y.parent is None:
            self.root = y
        else:
            if y.parent.left is x:
                y.parent.left = y
            elif y.parent.right is x:
                y.parent.right = y
        x.left = y.right
        if x.left is not None:
            x.left.parent = x
        y.right = x
        x.parent = y
        update_height(x)
        update_height(y)
 
    def rebalance(self, node):
        while node is not None:
            update_height(node)
            if height(node.left) >= 2 + height(node.right):
                if height(node.left.left) >= height(node.left.right):
                    self.right_rotate(node)
                else:
                    self.left_rotate(node.left)
                    self.right_rotate(node)
            elif height(node.right) >= 2 + height(node.left):
                if height(node.right.right) >= height(node.right.left):
                    self.left_rotate(node)
                else:
                    self.right_rotate(node.right)
                    self.left_rotate(node)
            node = node.parent
 
    def insert(self, k):
        """Inserts a node with key k into the subtree rooted at this node.
        This AVL version guarantees the balance property: h = O(lg n).
 
        Args:
            k: The key of the node to be inserted.
        """
        node = AVLNode(None, k)
        if self.root is None:
            # The root's parent is None.
            self.root = node
        else:
            self.root.insert(node)
        self.rebalance(node)
 
    def delete(self, k):
        """Deletes and returns a node with key k if it exists from the BST.
        This AVL version guarantees the balance property: h = O(lg n).
 
        Args:
            k: The key of the node that we want to delete.
 
        Returns:
            The deleted node with key k.
        """
        node = self.find(k)
        if node is None:
            return None
        if node is self.root:
            pseudoroot = AVLNode(None, 0)
            pseudoroot.left = self.root
            self.root.parent = pseudoroot
            deleted = self.root.delete()
            self.root = pseudoroot.left
            if self.root is not None:
                self.root.parent = None
        else:
            deleted = node.delete()   
        ## node.parent is actually the old parent of the node,
        ## which is the first potentially out-of-balance node.
        self.rebalance(deleted.parent)
 
def test(args=None):
    import random, sys
    if not args:
        args = sys.argv[1:]
    if not args:
        print('usage: %s ' % \
              sys.argv[0])
        sys.exit()
    elif len(args) == 1:
        items = (random.randrange(100) for i in range(int(args[0])))
    else:
        items = [int(i) for i in args]
 
    tree = AVL()
    print(tree)
    for item in items:
        tree.insert(item)
        print()
        print(tree)
 
if __name__ == '__main__': test()

输出:

python avlrc.py 1 2 3 4 5 6 7 8 9 10

... only showing last tree ...

   ..4...
  /      \
  2      .8.
 / \    /   \
1  3    6   9
/\ /\  / \  /\
      5  7   10
      /\ /\  /\

你可能感兴趣的:(代码实现,算法)