- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- SVM(支持向量机)原理及数学推导全过程详解
子木呀
支持向量机人工智能分类算法SVM
由于格式问题,为方便阅读,请点击下方链接访问原文点击此处访问原文点击此处访问原文点击此处访问原文点击此处访问原文关于SVM网上已经有很多很多的前辈有过讲解,这两天自己在网上看了看资料,结合前辈们的文章对SVM进行了一个整理,把看的过程中产生的一些问题也进行了解答。本来想着总结得简洁明了又易懂,但SVM本就有严格的数学理论支撑,不像其他机器学习算法是一个黑箱,写完发现要尽量让小白也懂少不了具体的论述
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 支持向量机SVM原理详解
handsomeboysk
支持向量机机器学习人工智能
SVM原理详解1、超平面2、SVM原理1.问题定义2.分类决策得到约束条件3.最大化间隔4.优化目标3、凸优化问题1.原始优化问题优化目标约束条件2.拉格朗日乘子法3.拉格朗日函数分析4.求解对www和bbb的极值5.构造对偶问题对偶问题的约束条件:6、通过支持向量求解bbb支持向量的条件7.对偶问题的解法4、非线性如何划分1.非线性数据问题2.核技巧的核心思想3.常见的核函数1.线性核(Line
- 【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基
智能算法及其模型预测
支持向量机回归算法
【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基本的记忆策略,一个遗忘和补充策略,以平衡探索和利用,值得一试!该成果由YifanLang于2025年3月发表在SCI一区Top期刊《ComputerMethodsinAppliedMechanicsand
- 达梦数据库并发场景下,抓取执行久/等待久的慢SQL
泛冬以南
常用技术记录数据库sql
--ss单位是秒select*from(select(SELECTround(SUM(TOTAL_SIZE/1024/1024),2)FROMV$MEM_POOLCwhereC.name='VIRTUALMACHINE'ANDC.CREATOR=A.THRD_IDGROUPBYCREATOR)ASVM_TOTAL_SIZE_BY_M,a.trx_id,a.thrd_id,clnt_ip,c.ROL
- Spark MLlib中的机器学习算法及其应用场景
Java资深爱好者
深度学习推荐算法
SparkMLlib是ApacheSpark框架中的一个机器学习库,提供了丰富的机器学习算法和工具,用于处理和分析大规模数据。以下是SparkMLlib中的机器学习算法及其应用场景的详细描述:一、SparkMLlib中的机器学习算法分类算法:逻辑回归:用于二分类问题,通过最大化对数似然函数来估计模型参数。支持向量机(SVM):用于分类和回归问题,通过寻找一个超平面来最大化不同类别之间的间隔。决策树
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- IDEA快捷键总结
sq0723
代码开发工具集群环境搭建IDEA快捷键
//代码导入******1、ctrl+alt+s设置菜单2、Ctrl+d复制行或者已选代码块3、Alt+/代码自动补全4、Alt+insert自动生成构造方法等5、Ctrl+shift+回车自动补全结尾6、Ctrl+j自动代码生成模板,例如psvm,sout等7、Alt+回车导包或者修正已经导入的包///代码编辑**8、Ctrl+alt+l格式化代码9、Ctrl+alt+i代码自动缩进10、Ctr
- IDEA中常用快捷键
以码令天下
后端JAVAjava开发语言
IDEA中的快捷键在IDEA中快速生成if(变量==null):ifn在IDEA中快速生成main方法:psvm在IDEA中快速生成Sytem.out.println():sout删除一行:Ctrl+yIDEA是自动保存的对于目录:左箭头关闭,右箭头打开IDEA中任何窗口的关闭:Esc窗口的变大、变小:shift+Ctrl+F12或者Alt+1切换窗口:Alt+左/右箭头快速运行:Ctrl+shi
- 大模型稀疏动态架构
deepdata_cn
垂域模型语言模型
DeepSeek应用稀疏动态架构(SparseDynamicArchitecture)是其大模型技术的核心创新点。大模型稀疏动态架构是一种用于构建大规模人工智能模型的先进架构,整体提高了模型的效率、灵活性和性能。一、发展历程1.早期探索阶段起源基础:20世纪8090年代的早期机器学习主要集中在决策树、SVM、KNN等经典算法,模型规模小,依赖手工特征。之后在2006年GeoffreyHinton提
- 【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)
天天科研工作室
故障诊断模型RIME-CNN-SVM故障诊断matlabcnn
【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章目录【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章介绍基本步骤代码分享运行结果参考资料文章介绍基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型是一种利用MATLAB编程环境,结合RIME-C
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- R-CNN架构
人工智能
R-CNN架构架构RCCN由三个模块组成:第一个模块生成与类别无关的区域提议。这些提议定义了我们的检测器可用的候选检测集。第二个模块是一个大型卷积神经网络,它从每个区域中提取固定长度的特征向量。第三个模块是一组特定类别的线性支持向量机(SVM)。虽然R-CNN对特定的区域提议方法不挑剔,但选择性搜索(Selectivesearch)是最常用的方法,以便与之前的检测工作进行有对照的比较。实现在测试时
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 线性回归、逻辑回归及SVM
@迷途小书童
机器学习
1,回归(LinearRegression)回归其实就是对已知公式的未知参数进行估计。可以简单的理解为:在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。当然,实际运算有一些优化算法,肯定不会去枚举的。注意,回归的前提是公式已知,否则回归无法进行。回归中的公式基本都是数据分
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- 基于 STM32 平台的音频特征提取与歌曲风格智能识别系统
赵谨言
论文经验分享毕业设计
标题:基于STM32平台的音频特征提取与歌曲风格智能识别系统内容:1.摘要摘要:本文介绍了一种基于STM32平台的音频特征提取与歌曲风格智能识别系统。该系统通过对音频信号进行特征提取和分析,实现了对歌曲风格的自动识别。在特征提取方面,系统采用了快速傅里叶变换(FFT)和梅尔频率倒谱系数(MFCC)等方法,对音频信号进行了时频域分析和声学特征提取。在歌曲风格识别方面,系统采用了支持向量机(SVM)和
- 基于Simulink的动态响应与稳定性的矩阵变换器建模仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录基于Simulink的动态响应与稳定性的矩阵变换器建模仿真1.背景介绍1.1项目背景1.2系统描述1.3应用场景2.具体的仿真建模过程2.1系统模型构建2.1.1矩阵变换器主电路模型2.1.2空间矢量调制(SVM)控制器模型2.1.3PI控制器模型2.1.4负载模型2.2连接各模块2.3添加输出电压测量2.4添加输出显示3.仿真设置与运行3.1设置仿真参数3.2运行仿真3.3分析仿真结果4.结
- Python与R机器学习(1)支持向量机
宠物与不尤编程
左手python右手R支持向量机机器学习pythonr语言
以下是对Python与R在支持向量机(SVM)实现上的核心区别分析及完整示例代码:一、核心差异对比特征Python(scikit-learn)R(e1071/kernlab)核心库sklearn.svm.SVC/SVRe1071::svm()或kernlab::ksvm()语法范式面向对象(先初始化模型后拟合)函数式+公式接口(y~x1+x2)核函数支持linear,poly,rbf,sigmoi
- CentOS 7+GitLab搭建
一路向东-Kevin
开发工具集centosgitlab
内容介绍:CentOS7+GitLab搭建博客地址:[http://blog.csdn.net/kevindgk(http://blog.csdn.net/kevindgk)开发文档地址:https://kevindgk.github.io/版权声明:本文为原创文章,未经允许不得转载联系方式:
[email protected]简介GitlabCentOS环境安装过程下载虚拟机下载CentOSVMwa
- VPP/软件架构
lingshengxiyou
DPDKc++linux开发语言linuxc++服务器网络
一、源码目录(Directorylayout)二、源码分类(Implemetationtaxonomy)vpp数据平面分为四个不同的层:基础架构层:包括vppinfra,vlib,svm和二进制api库。源码:/src/{vppinfra,vlib,svm,vlibapi,vlibmemory}通用网络协议栈层:vnet。源码:/src/vnet应用程序shell:vpp。源码:/src/vpp日
- 数值型特征处理 - 归一化和分桶
Ivanqhz
设计模式javaspark大数据分布式
归一化概述归一化,好像是把数据缩放到某个范围内,比如0到1或者标准化处理。而分桶可能是指把连续的数值分成不同的区间,比如年龄段分成0-18,19-30这样的区间消除特征间的量纲差异,使不同特征具有可比性,适用于依赖距离或梯度的模型(如SVM、神经网络、KNN)最大最小归一化(Min-MaxScaling)将数据线性映射到[0,1]计算公式:xnorm=x−xminxmax−xminx_{norm}
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- 【LSSVM时间序列预测】白鲨算法优化最小二乘支持向量机WSO-LSSVM时序预测未来数据【含Matlab源码 2483期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 锂电池剩余寿命预测 | 基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究附Matlab参考代码
默默科研仔
锂电池寿命预测支持向量机PSO-SVM粒子群优化支持向量机锂电池剩余寿命预测
基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究一、引言1.1、研究背景与意义随着科技的迅速发展,锂电池因其高能量密度、长循环寿命等优点,已广泛应用于移动设备、电动汽车等领域。准确预测锂电池的剩余寿命(RUL),不仅有助于提高设备的运行效率和安全性,还能有效降低维护成本,延长设备使用寿命。因此,锂电池剩余寿命预测研究具有重要的理论和实际应用价值。1.2、研究现状目前,锂电池剩余寿命预
- 数据库第八章:存储引擎
琴剑诗酒
数据库
1.简介相当于Linux文件系统,只不过比文件系统强大2、功能了解数据读写数据安全和一致性提高性能热备份自动故障恢复高可用方面支持存储引擎介绍showengines;CSVMRG_MYISAMMyISAMBLACKHOLEPERFORMANCE_SCHEMAMEMORYARCHIVEInnoDBFEDERATED笔试题:常见的存储引擎?InnoDB,MyISAM,MEMORY,CSVMySQL默认
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/